In this paper we introduce mixed unitary Cayley graph $M_{n}$ $(n>1)$ and compute its eigenvalues. We also compute the energy of $M_{n}$ for some $n$.

[1] C. Adiga, R. Balakrishnan and W. So, The skew energy of a digraph, Linear Algebra Appl., 432 (2010) 1825–1835.

[2] T. M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976.

[3] R. B. Bapat, J. W. Grossman and D. M. Kulakarni, Generalized matrix tree theorem for mixed graphs, Linear and Multilinear Algebra, 46 (1999) 299–312.

[4] R. B. Bapat, J. W. Grossman and D. M. Kulakarni, Edge version of the matrix tree theorem for trees, Linear and Multilinear Algebra, 47 (2000) 217–229.

[5] P. J. Davis, Circulant Matrices, A Wiley-Interscience Publication, Pure and Applied Mathematics, John Wiley Sons, New York-Chichester-Brisbane, 1979.

[6] W. Klotz and T. Sander, Some properties of unitary Cayley graphs, Electron. J. Combin., 14 (2007) 1–12.

[7] F. Yizheng, On spectra integral variations of mixed graph, Linear Algebra Appl., 374 (2003) 307–316.

[8] I. Gutman, The energy of a graph, Ber. Math. Statist. sekt. Forsch. Graz, 103 (1978) 1–22.

[9] L. S. Melnikov and V. G. Vizing, The edge chromatic number of a directed/mixed multigraph, J. Graph Theory, 31 (1999) 267–273.

[10] H. N. Ramaswamy and C. R. Veena, On the energy of unitary Cayley graphs, Electron. J. Combin., 16 (2009) 1–8.

[11] X. D. Zhang and J. S. Li, The Laplacian spectrum of a mixed graph, Linear Algebra Appl., 353 (2002) 11–20.