Amjadi, H., Soltankhah, N., Shajarisales, N., Tahvilian, M. (2016). On the spectrum of $r$-orthogonal Latin squares of different orders. Transactions on Combinatorics, 5(2), 41-51. doi: 10.22108/toc.2016.11665

Hanieh Amjadi; Nasrin Soltankhah; Naji Shajarisales; Mehrdad Tahvilian. "On the spectrum of $r$-orthogonal Latin squares of different orders". Transactions on Combinatorics, 5, 2, 2016, 41-51. doi: 10.22108/toc.2016.11665

Amjadi, H., Soltankhah, N., Shajarisales, N., Tahvilian, M. (2016). 'On the spectrum of $r$-orthogonal Latin squares of different orders', Transactions on Combinatorics, 5(2), pp. 41-51. doi: 10.22108/toc.2016.11665

Amjadi, H., Soltankhah, N., Shajarisales, N., Tahvilian, M. On the spectrum of $r$-orthogonal Latin squares of different orders. Transactions on Combinatorics, 2016; 5(2): 41-51. doi: 10.22108/toc.2016.11665

On the spectrum of $r$-orthogonal Latin squares of different orders

Two Latin squares of order $n$ are orthogonal if in their superposition, each of the $n^{2}$ ordered pairs of symbols occurs exactly once. Colbourn, Zhang and Zhu, in a series of papers, determined the integers $r$ for which there exist a pair of Latin squares of order $n$ having exactly $r$ different ordered pairs in their superposition. Dukes and Howell defined the same problem for Latin squares of different orders $n$ and $n+k$. They obtained a non-trivial lower bound for $r$ and solved the problem for $k \geq \frac{2n}{3} $. Here for $k < \frac{2n}{3}$, some constructions are shown to realize many values of $r$ and for small cases $(3\leq n \leq 6)$, the problem has been solved.

[1] G. B. Belyavskaya, $r$-Orthogonal quasigroups I, Math. Issled., 39 (1976) 32–39.

[2] G. B. Belyavskaya, $r$-Orthogonal quasigroups II, Math. Issled., 43 (1976) 39–49.

[3] G. B. Belyavskaya, $r$-Orthogonal Latin squares, in: J. Dénes and A. D. Keedwell (Editors), Latin Squares: New Developments, Elsevier, North-Holland, Amsterdam, 1992.

[4] C. J. Colbourn and L. Zhu, The spectrum of r-orthogonal Latin squares, C. J. Colbourn, E. S. Mahmoodian (Editors), Combinatorics advances (Tehran, 1994), Kluwer Academic Press, Dordrecht, 1995 49–75.

[5] P. Dukes and J. Howell, The orthogonality spectrum for Latin squares of different orders, Graphs Combin., 29 (2013) 71–78.

[6] J. Howell, The intersection problem and different pairs problem for Latin squares, Ph. D. dissertation, University of Victoria, 2010.

[7] H. J. Ryser, A combinatorial theorem with an application to Latin rectangles, Proc. Amer. Math. Soc., 2 (1951) 550–552.

[8] L. Zhu and H. Zhang, A few more $r$-orthogonal Latin squares, Discrete Math., 238 (2001) 183–191.

[9] L. Zhu and H. Zhang, Completing the spectrum of $r$-orthogonal Latin squares, Discrete Math., 268 (2003) 343–349.