Extremal tetracyclic graphs with respect to the first and second Zagreb indices

Document Type: Research Paper

Authors

1 university of Ayatollah Al-ozma

2 University of Kashan

Abstract

‎The first Zagreb index‎, ‎$M_1(G)$‎, ‎and second Zagreb index‎, ‎$M_2(G)$‎, ‎of the graph $G$ is defined as $M_{1}(G)=\sum_{v\in‎ ‎V(G)}d^{2}(v)$ and $M_{2}(G)=\sum_{e=uv\in E(G)}d(u)d(v),$ where‎ ‎$d(u)$ denotes the degree of vertex $u$‎. ‎In this paper‎, ‎the first‎ ‎and second maximum values of the first and second Zagreb indices‎
‎in the class of all $n-$vertex tetracyclic graphs are presented‎.

Keywords

Main Subjects


[1] V. Andova and M. Petrusevski, Variable Zagreb indices and Karamata's inequality, MATCH Commun. Math. Comput. Chem.,
65 no. 3 (2011) 685{690.
[2] V. Andova, N. Cohen and R. Skrekovski, Graph classes (dis)satisfying the Zagreb indices inequality, MATCH Commun. Math.
Comput. Chem., 65 no. 3 (2011) 647{658.
[3] A. R. Ashra , T. Doslic and A. Hamzeh, The Zagreb coindices of graph operations, Discrete Appl. Math., 158 no. 15 (2010)
1571{1578.
[4] A. R. Ashra , T. Dehghan-Zadeh, N. Habibi and P. E. John, Maximum values of atom􀀀bond connectivity index in the class
of tricyclic graphs, J. Appl. Math. Comput., 50 no. 1-2 (2016) 511{527.
[5] K. Ch. Das and I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem., 52 (2004)
103{112.
[6] K. Ch. Das, I. Gutman and B. Zhou, New upper bounds on Zagreb indices, J. Math. Chem., 46 no. 2 (2009) 514{521.
[7] T. Dehghan-Zadeh, H. Hua, A. R. Ashra and N. Habibi, Extremal tri-cyclic graphs with respect to the rst and second
Zagreb indices, Note Mat., 33 no. 2 (2013) 107{121.
[8] T. Dehghan-Zadeh, A. R. Ashra and N. Habibi, Maximum values of atom􀀀bond connectivity index in the class of tetracyclic
graphs, J. Appl. Math. Comput., 46 no. 1-2 (2014) 285{303.
[9] T. Dehghan-Zadeh, A. R. Ashra and N. Habibi, Tetracyclic graphs with extremal values of Randic index, Boll. Unione Mat.
Ital., 8 no. 1 (2015) 9{16.
[10] I. Gutman and K. Ch. Das, The rst Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 50 (2004) 83{92.
[11] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals, Total electron energy of alternant hydrocarbons, Chem.
Phys. Lett., 17 (1972) 535{538.
[12] A. Ilic, M. Ilic and B. Liu, On the upper bounds for the rst Zagreb index, Kragujevac J. Math., 35 no. 1 (2011) 173{182.
[13] M. H. Khalifeh, H. Youse -Azari and A. R. Ashra , The rst and second Zagreb indices of some graph operations, Discrete
Appl. Math, 157 no. 4 (2009) 804{811.
[14] S. Li and H. Zhou, On the maximum and minimum Zagreb indices of graphs with connectivity at most k, Appl. Math. Lett.,
23 no. 2 (2010) 128{132.
[15] S. Li and M. Zhang, Sharp upper bounds for Zagreb indices of bipartite graphs with a given diameter, Appl. Math. Lett., 24
no. 2 (2011) 131{137.
[16] S. Li and Q. Zhao, Sharp upper bounds on Zagreb indices of bicyclic graphs with a given matching number, Math. Comput.
Modelling, 54 no. 11-12 (2011) 2869{2879.

[17] S. Li, H. Yang and Q. Zhao, Sharp bound on Zagreb indices of cacti with k pendant vertices, Filomat, 26 no. 6 (2012)
1189{1200.
[18] S. N. Qiao, On The Zagreb index of quasi-tree graphs, Appl. Math. E-Notes, 10 (2010) 147{150.
[19] P. S. Ranjini, V. Lokesha and I. N. Cangul, On the Zagreb indices of the line graphs of the subdivision graphs, Appl. Math.
Comput., 218 no. 3 (2011) 699{702.
[20] D. Stevanovic, Comparing the Zagreb indices of the NEPS of graphs, Appl. Math. Comput., 219 no. 3 (2012) 1082{1086.
[21] K. Xu, The Zagreb indices of graphs with a given clique number, Appl. Math. Lett., 24 no. 6 (2011) 1026{1030.
[22] Z. Yarahmadi, A. R. Ashra and S. Moradi, Extremal polyomino chains with respect to Zagreb indices, Appl. Math. Lett., 25
no. 2 (2012) 166{171.
[23] Q. Zhao and S. Li, Sharp bounds for the Zagreb indices of bicyclic graphs with k-pendant vertices, Discrete Appl. Math., 158
no. 17 (2010) 1953{1962.