• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Advisory Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Transactions on Combinatorics
Articles in Press
Current Issue
Journal Archive
Volume Volume 7 (2018)
Volume Volume 6 (2017)
Volume Volume 5 (2016)
Volume Volume 4 (2015)
Volume Volume 3 (2014)
Volume Volume 2 (2013)
Volume Volume 1 (2012)
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Alimadadi, A., Eslahchi, C., Jafari Rad, N. (2012). A note on the total domination supercritical graphs. Transactions on Combinatorics, 1(3), 1-4. doi: 10.22108/toc.2012.1829
Abdollah Alimadadi; Changiz Eslahchi; Nader Jafari Rad. "A note on the total domination supercritical graphs". Transactions on Combinatorics, 1, 3, 2012, 1-4. doi: 10.22108/toc.2012.1829
Alimadadi, A., Eslahchi, C., Jafari Rad, N. (2012). 'A note on the total domination supercritical graphs', Transactions on Combinatorics, 1(3), pp. 1-4. doi: 10.22108/toc.2012.1829
Alimadadi, A., Eslahchi, C., Jafari Rad, N. A note on the total domination supercritical graphs. Transactions on Combinatorics, 2012; 1(3): 1-4. doi: 10.22108/toc.2012.1829

A note on the total domination supercritical graphs

Article 1, Volume 1, Issue 3, September 2012, Page 1-4  XML PDF (401 K)
Document Type: Research Paper
DOI: 10.22108/toc.2012.1829
Authors
Abdollah Alimadadi1; Changiz Eslahchi1; Nader Jafari Rad 2
1Shahid Beheshti University
2Shahrood University of Technology
Abstract
‎Let $G$ be a connected spanning subgraph of $K_{s,s}$ and let $H$‎ ‎be the complement of $G$ relative to $K_{s,s}$‎. ‎The graph $G$ is‎ ‎$k$-supercritical relative to $K_{s,s}$ if $\gamma_t(G)=k$‎ ‎and $\gamma_t(G+e)=k-2$ for all $e\in E(H)$‎. ‎The 2002 paper by‎ ‎T.W‎. ‎Haynes‎, ‎M. A‎. ‎Henning and L.C‎. ‎van der Merwe‎, ‎``Total‎ ‎domination supercritical graphs with respect to relative‎ ‎complements‎" ‎that appeared in Discrete Mathematics‎, ‎258 (2002)‎, ‎361-371‎, ‎presents a theorem (Theorem 11) to produce $(2k‎ + ‎2)$-supercritical graphs relative to $K_{2k+1‎, ‎2k+1}$ of diameter‎ ‎$5$‎, ‎for each $k\geq 2$‎. ‎However‎, ‎the families of graphs in their‎ ‎proof are not the case‎. ‎We present a correction of this theorem‎.
Keywords
Total domination; Supercritical; Diameter
Main Subjects
05C69 Dominating sets, independent sets, cliques
References
A. Alimadadi, Ch. Eslahchi, T. W. Haynes, M. A. Henning, N. Jafari Rad and L. C. van der Merwe (2012). Erratum to "Total domination supercritical graphs with respect to relative complements. [Discrete Math., {bf 258} (2002) 361-371], Discrete Math. 312, 1076
T. W. Haynes, S. T. Hedetniemi and P. J. Slater (1998). Fundamentals of Domination in Graphs. Marcel Dekker, NewYork.
T. W. Haynes, M. A. Henning, and L. C. van der Merwe (2002). Total domination supercritical graphs with respect to relative complements. Total domination supercritical graphs with respect to relative complements. 258, 361-371
Statistics
Article View: 4,497
PDF Download: 3,110
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.