A NOTE ON THE TOTAL DOMINATION SUPERCRITICAL GRAPHS

A. ALIMADADI, CH. ESLAHCHI AND N. JAFARI RAD

Communicated by Alireza Abdollahi

Abstract. Let \(G \) be a connected spanning subgraph of \(K_{s,s} \) and let \(H \) be the complement of \(G \) relative to \(K_{s,s} \). The graph \(G \) is \(k \)-supercritical relative to \(K_{s,s} \) if \(\gamma_t(G) = k \) and \(\gamma_t(G + e) = k - 2 \) for all \(e \in E(H) \). The 2002 paper by T.W. Haynes, M.A. Henning and L.C. van der Merwe, “Total domination supercritical graphs with respect to relative complements” that appeared in Discrete Mathematics, 258 (2002), 361-371, presents a theorem (Theorem 11) to produce \((2k + 2) \)-supercritical graphs relative to \(K_{2k+1,2k+1} \), for each \(k \geq 2 \). However, the families of graphs in their proof are not the case. We present a correction of this theorem.

1. Introduction

Let \(G = (V(G), E(G)) \) be a simple graph of order \(n \). We denote the open neighborhood of a vertex \(v \) of \(G \) by \(N_G(v) \), or just \(N(v) \), and its closed neighborhood by \(N_G[v] = N[v] \). For a vertex set \(S \subseteq V(G) \), \(N(S) = \bigcup_{v \in S} N(v) \) and \(N[S] = \bigcup_{v \in S} N[v] \). A set of vertices \(S \) in \(G \) is a total dominating set, (or just TDS), if \(N(S) = V(G) \). The total domination number, \(\gamma_t(G) \) of \(G \), is the minimum cardinality of a total dominating set of \(G \). For Graph Theory notation and terminology in general we follow [2].

Haynes, Henning and Van der Merwe in [3] studied total domination supercritical graphs with respect to relative complements. Let \(G \) be a connected spanning subgraph of \(K_{s,s} \) and let \(H \) be the complement of \(G \) relative to \(K_{s,s} \). The graph \(G \) is \(k \)-supercritical relative to \(K_{s,s} \) if \(\gamma_t(G) = k \) and \(\gamma_t(G + e) = k - 2 \) for all \(e \in E(H) \). They presented a construction to produce \(6 \)-supercritical graphs of diameter 5.

For \(k \geq 2 \), let \(\mathcal{G}_k \) be the class of all graphs \(G \) such that \(G \in \mathcal{G}_k \) if and only if \(G \) is formed as follows. Form \(G \) from \(k \) copies of the cycle \(C_6 \) by identifying an edge, say \(ab \), common to every cycle. Let

Keywords: Total domination, Supercritical, Diameter.
Received: 13 July 2012, Accepted: 23 September 2012.
*Corresponding author.
Consider the construction presented before Theorem 2.1. For $i \in \{1, \ldots, k-1\}$, let $b_i \in N(a_{i+1})$, and $b_k \in N(a_1)$. Then clearly $S = \{a_i, b_i : i = 1, 2, \ldots, k\}$ is a TDS for G, implying that $\gamma_t(G) = 2k$. Thus the above construction does not produce $(2k+2)$-supercritical graphs.

We will now give a corrected construction.

- For $k \geq 2$, let \mathcal{H}_k be the class of all graphs G such that $G \in \mathcal{H}_k$ if and only if G is formed as follows. Form G from k copies of the cycle C_6 by identifying an edge, say ab, common to every cycle. Let $A = N(a) - \{b\}$ and $B = N(b) - \{a\}$, and label the vertices of A and B as $A = \{a_1, a_2, \ldots, a_k\}$ and $B = \{b_1, b_2, \ldots, b_k\}$ such that a_i and b_i are in the ith copy of C_6. Finally, for $i = 1, 2, \ldots, k-1$, join a_i to every vertex in $\{b_{i+1}, b_{i+2}, \ldots, b_k\}$. Clearly, G is a bipartite spanning subgraph of $K_{2k+1,2k+1}$ and $diam(G) = 5$.

Theorem 2.1. For each $k \geq 2$, $G \in \mathcal{H}_k$ is a $(2k+2)$-supercritical graph relative to $K_{2k+1,2k+1}$ of diameter 5.

Proof. Let $k \geq 2$ and $G \in \mathcal{H}_k$. Clearly $diam(G) = 5$. Let $C^1_6, C^2_6, \ldots, C^k_6$ be the k copies of C_6, and $V(C^i_6) = \{a,b,a_i,b_i,c_i,d_i\}$, and $E(C^i_6) = \{ab,aa_i,a_id_i,d_ic_i,c_ib_i,bib\}$ for $i = 1, 2, \ldots, k$.

We first show that $\gamma_t(G) = 2k + 2$. Let S be a $\gamma_t(G)$-set. For each i, since d_i is totally dominated by S, we find that $S \cap \{a_i, c_i\} \neq \emptyset$, and since c_i is totally dominated by S, we find that $S \cap \{d_i, b_i\} \neq \emptyset$, and so $|S \cap (V(C^i_6) - \{a, b\})| \geq 2$. Thus $|S| \geq 2k$. We show that $|S| = 2k + 2$.

Suppose that $|S| = 2k + 1$. Then $|S \cap \{a, b\}| \leq 1$. We consider the following cases.

Case 1. $|S \cap (a, b)| = 1$. Then $|S \cap (V(C^i_6) - \{a, b\})| = 2$ for any $i \in \{1, 2, \ldots, k\}$. Without loss of generality assume that $a \in S$ and $b \not\in S$. Since a is totally dominated by S, we find that there is an integer $j \in \{1, 2, \ldots, k\}$ such that $a_j \in S$. If $c_j \in S$, then $S \cap \{b_j, d_j\} \neq \emptyset$, since c_j is totally dominated by S. Then $|S \cap (V(C^j_6) - \{a, b\})| = 3 > 2$, a contradiction. Thus $c_j \not\in S$. Since b_j is totally dominated by S, there is an integer $t < j$ such that $a_t \in S$. As before we find that $c_t \not\in S$, and there is an integer $l < t$ such that $a_l \in S$. By continuing this process, we obtain that $a_1 \in S$. Since b_1 is totally
dominated by S, we find that $c_1 \in S$, and so $S \cap \{b_1, d_1\} \neq \emptyset$. Thus, $|S \cap (V(C^i_6) - \{a,b\})| = 3 > 2$, a contradiction.

Case 2. $|S \cap \{a,b\}| = 0$. Then there is an integer $m \in \{1, 2, \ldots, k\}$ such that $|S \cap (V(C^m_6) - \{a,b\})| = 3$, and

$$\text{(2.1)}$$

for any $i \neq m$, $|S \cap (V(C^i_6) - \{a,b\})| = 2$.

Claim 1. $m \notin \{1,k\}$.

Proof of Claim 1. Assume that $m = 1$. Then $|S \cap (V(C^1_6) - \{a,b\})| = 3$ and

$$\text{(2.2)}$$

for any $i \in \{2,3,\ldots,k\}$, $|S \cap (V(C^i_6) - \{a,b\})| = 2$.

Since b_1 is totally dominated by S, $c_1 \in S$, and since c_1 is totally dominated by S, $S \cap \{b_1,d_1\} \neq \emptyset$. Since a is totally dominated by S, there is an integer i such that $a_i \in S$. If $i \neq 1$, then $a_1 \notin S$. Since c_i is totally dominated by S, $S \cap \{b_i,d_i\} \neq \emptyset$, and since b_i is totally dominated by S, $a_t \in S$ for some integer $t < i$. By continuing this process as seen in Case 1, we obtain that $a_1 \in S$, a contradiction. Thus $i = 1$, and $a_1 \in S$.

Since b is dominated by S, there is an integer j such that $b_j \in S$. Assume that $j \neq 1$. Then $b_1 \notin S$. Since d_j is totally dominated by S, $S \cap \{a_j,c_j\} \neq \emptyset$, and since a_j is totally dominated by S, $b_n \in S$, for some $n > j$. By continuing this process we obtain that $b_k \in S$.

Since a_k is totally dominated by S, $d_k \in S$, and since d_k is totally dominated by S, $S \cap \{a_k,c_k\} \neq \emptyset$. Then $|S \cap (V(C^k_6) - \{a,b\})| = 3 > 2$ contradicting (2.2). Thus $j = 1$ and $b_1 \in S$.

Now $a_1,b_1,c_1 \in S$, and $d_1 \notin S$. Since a_1 is totally dominated by S, there is an integer l such that $b_l \in S$, and since d_l is totally dominated by S, $S \cap \{a_l,c_l\} \neq \emptyset$. Since a_l is totally dominated by S, $b_p \in S$ for some integer p, and by continuing this process we obtain that $b_k \in S$. Since a_k is totally dominated by S, $d_k \in S$, and since d_k is totally dominated by S, $S \cap \{a_k,c_k\} \neq \emptyset$. Thus $|S \cap (V(C^k_6) - \{a,b\})| = 3 > 2$, contradicting (2.2). Thus $m \neq 1$. The proof for $m \neq k$ is similar. \[\square \]

Since a is totally dominated by S, there is an integer $j \in \{1,2,\ldots,k\}$ such that $a_j \in S$, and since b is totally dominated by S, there is an integer $l \in \{1,2,\ldots,k\}$ such that $b_l \in S$. Since c_j is totally dominated by S, $S \cap \{d_j,b_j\} \neq \emptyset$.

We show that $j = m$. If $j \neq m$, then by (2.1), for b_j to be totally dominated by S, there is an integer t such that $t < j$ and $a_t \in S$. If $t > 1$, we do with a_t similarly to b_j, and thus we may assume that $t = 1$, and so $a_1 \in S$. Since b_1 is totally dominated by S, we find that $c_1 \in S$, and since c_1 is dominated by S, $S \cap \{b_1,d_1\} \neq \emptyset$. Then $|S \cap (V(C^1_6) - \{a,b\})| = 3 > 2$, and so $m = 1$. But by Claim 1, $m \notin \{1,m\}$, a contradiction. Thus $j = m$.

Similarly, $l = m$. Thus $j = l = m$. Since b_m is totally dominated by S, $S \cap \{c_m,a_t\} \neq \emptyset$ for some $t < m$, and since a_m is totally dominated by S, $S \cap \{d_m,b_n\} \neq \emptyset$ for some $n > m$. Without loss of generality assume that $c_m \in S$. As before, we can see that $a_1 \in S$. Since b_1 is totally dominated by
S we find that $c_1 \in S$, and since c_1 is totally dominated by S we find that $S \cap \{b_1, d_1\} \neq \emptyset$. Thus $|S \cap (V(C^1_k) - \{a, b\})| = 3 > 2$, a contradiction.

We conclude that $|S| \geq 2k + 2$. On the other hand $\{a, b, a_i, b_i : i = 1, 2, \ldots, k\}$ is a TDS for G, implying that $\gamma_t(G) = 2k + 2$.

Now we show that $\gamma_t(G + e) = 2k$ for all $e \in E(H)$, where H is the complement of G relative to $K_{2k+1, 2k+1}$. Since $\gamma_t(G) = 2k + 2$, for any $e \in E(H)$, it is obvious that $\gamma_t(G + e) \geq 2k$. Thus for any $e \in E(H)$, it is sufficient to present a TDS for $G + e$ of cardinality $2k$.

If $e = ac$ for some i, then $\{a, c_i, d_j, c_j : j = 1, 2, \ldots, k, j \neq i\}$ is a TDS for $G + e$. If $e = ab_i$ for some i, then $\{a_i, b_i, d_j, c_j : j = 1, 2, \ldots, k, j \neq i\}$ is a TDS for $G + e$. If $e = b_i a_j$ for some i, j with $i < j$, then $\{a_i, b_i, a_j, b_j, c_l, d_l : l = 1, 2, \ldots, k, l \neq i, j\}$ is a TDS for $G + e$. If $e = b_i c_j$ for some i, l with $i \neq l$, then $\{b_i, c_l, a_i, c_j, d_j : j = 1, 2, \ldots, k, j \neq i, l\}$ is a TDS for $G + e$. If $e = bd_i$ for some i, then $\{b, d_i, c_j, d_j : j = 1, 2, \ldots, k, j \neq i\}$ is a TDS for $G + e$. If $e = ad_i$ for some i, j with $i \neq j$, then $\{a_j, d_i, b_i, a_j, c_l, d_l : l = 1, 2, \ldots, k, l \neq i, j\}$ is a TDS for $G + e$. Finally if $e = d_i c_j$ for some i, l with $i \neq l$, then $\{a, b, d_i, c_l, c_j, d_j : j = 1, 2, \ldots, k, j \neq i, l\}$ is a TDS for $G + e$. Note that the other possibilities for e are similarly verified.

\[\square\]

References

Abdollah Alimadadi
Department of Mathematics, Shahid Beheshti University, G. C., Evin, Tehran, Iran

Changiz Eslahchi
Department of Mathematics, Shahid Beheshti University, G. C., Evin, Tehran, Iran
Email: eslahchi.ch@gmail.com

Nader Jafari Rad
Department of Mathematics, Shahrood University of Technology, Shahrood, Iran
Email: n.jafarirad@gmail.com