[1] D. F. Anderson, A. Frazier, A. Lauve and P. S. Livingston,
The zero-divisor graph of a commutative ring. II, Ideal theoretic metho ds in commutative algebra (Columbia, MO,1999), Lecture Notes in Pure and Appl. Math.,
220, Dekker, New York, 2001 61-72.
[2] D. F. Anderson and P. S. Livingston, The Zero-divisor graph of a commutative ring,
J. Algebra,
217 no. 2 (1999) 434-447.
[3] S. Akbari, H. R. Maimani and S. Yassemi, When a zero-divisor graph is planar or a complete r -partite graph,
J. Algebra,
270 no. 1 (2003) 169-180.
[4] M. F. Aitiyah and I. G. Macdonald,
Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont, 1969.
[5] S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring,
J.Algebra,
274 no. 2 (2004) 847-855.
[6] M. Axtell, J. Stickles and W. Trampbachls, Zero-divisor ideals and realizable zero-divisor graphs,
Involve,
2 no. 1 (2009) 17-27.
[7] A. Badawi, On the annihilator graph of a commutative ring,
Comm. Algebra,
42 no. 1 (2014) 108-121.
[8] I. Beck, Coloring of commutative rings,
J. Algebra,
116 no. 1 (1998) 208-226.
[9] T. T. Chelvam and T. Asir, Domination in the Total Graph on Z
_{n} ,
Discrete Math. Algorithms Appl.,
3 no. 4 (2011) 413-421.
[10] D. A. Mo jdeh and A. M. Rahimi, Dominating Sets of Some Graphs Asso ciated to Commutative Rings,
Comm. Algebra,
40 no. 9 (2012) 3389-3396.