

Transactions on Combinatorics ISSN (print): 2251-8657, ISSN (on-line): 2251-8665 Vol. 6 No. 1 (2017), pp. 29-37. © 2017 University of Isfahan

SOME PROPERTIES OF COMAXIMAL IDEAL GRAPH OF A COMMUTATIVE RING

MEHRDAD AZADI* AND ZEINAB JAFARI

Communicated by Peter Csikvari

ABSTRACT. Let R be a commutative ring with identity. We use $\varphi(R)$ to denote the comaximal ideal graph. The vertices of $\varphi(R)$ are proper ideals of R which are not contained in the Jacobson radical of R, and two vertices I and J are adjacent if and only if I + J = R. In this paper we show some properties of this graph together with planarity of line graph associated to $\varphi(R)$.

1. Introduction

For the sake of completeness, we explain some definitions and points used throughout of the paper. A graph with vertex set V is said to be a graph on V. The vertex set of a graph G is referred to as V(G), its edge set as E(G). Let v be a vertex of G. The degree of v, d(v), is the number of edges incident to v. An *isolated vertex* is a vertex with zero degree. The maximum degree of G is defined as $\Delta(G) = max\{d_G(v)|v \in G\}$. A graph with no edges is called an *empty graph*. A graph with no vertices and no edges is called a *null graph*. A vertex v of G is called a *pendant* vertex in case the degree of v is one. All pendant vertices which are adjacent to the same vertex of G together with edges is called a *horn*. A graph G is said to be *connected* if there is at least one path between every pair of vertices in G and the distance between two vertices v and w, d(v, w), is the length of the shortest path connecting them. The diameter of a connected graph is the maximum of the distances between vertices. A graph in which each pair of distinct vertices is joined by an edge is called *complete graph*. We denote by K_n a complete graph with n vertices. An acyclic graph is a graph having no cycles. A connected acyclic graph is called a *tree*. Acyclic graphs are usually called *forests*. An n - partite graph is one whose vertex set can be partitioned into n subsets so that no edge has both ends in any one subset. If G be a bipartite graph which its vertex set is partitioned into two sets X and Y and every vertex in X is joined to every vertex in Y,

MSC(2010): Primary: 05C10; Secondary: 13A15.

Keywords: Comaximal graph, planar graph, line graph.

Received: 12 April 2016, Accepted: 08 September 2016.

^{*}Corresponding author.

then G is called a *complete bipartite graph*. If |X| = m and |Y| = n, we show this complete bipartite graph by $K_{m,n}$. A star is a complete bipartite graph with |X| = 1 or |Y| = 1. A graph is said to be *planar* if it can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph is any graph that can be obtained from the original graph by replacing some edges by paths. Kuratowski's theorem says that a graph is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$ [2, Theorem 4.4.6]. A subgraph of G is a graph H such that $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$. A *component* of G is a maximal connected subgraph of G. A *cut* - *vertex* of G, is a vertex that when removed (with its boundary edges) from G, creates a graph with more components than previously in G. The *line graph* of G (also called an interchange graph or edge graph), denoted L(G), is defined by V(L(G)) = E and $e_1e_2 \in E(L(G))$ if and only if e_1 and e_2 share a common vertex in G. A general prism is a polyhedron possessing two congruent polygonal faces and with all remaining faces parallelograms. An n - prism graph, denote Y_n , and sometimes also called circular ladder graph and denoted CL_n , is a graph that has one of the prisms as its skeleton. N-prism graphs are therefore both planar and polyhedral. An n-prism graph has 2n vertices and 3n edges. A *cycle graph*, C_n , is a graph on n vertices containing a single cycle through all vertices [8].

From now on let R be a commutative ring with identity. In [6], Sharma and Bhatwadekar defined a graph on R, with vertices as elements of R, where two distinct vertices a and b are adjacent if and only if Ra + Rb = R.

Later, Maimani et. al. [4], studied a subgraph of the graph structure defined by Sharma and Bhatwadekar named such graph structure "Comaximal Graphs". They considered the subgraph of Sharma's graph, $\Gamma_2(R)$, which consists of all non-unit elements of R.

In [9], Ye and Wu defined comaximal ideal graph, $\varphi(R)$, with vertices as proper ideals of R which are not contained in the Jacobson radical of R, and two vertices I and J are adjacent if and only if I + J = R. Recently, in [1], the planarity and perfection of this graph were studied.

In this paper, we obtain some properties of $\varphi(R)$ and we investigate the planarity of line graph associated to $\varphi(R)$.

2. Properties of $\varphi(R)$

In this section, we investigate that complete bipartite graphs with p horns can not realizable as the graph $\varphi(R)$.

Figure 1: A complete bipartite graph together with a horn $(K_{m,n}(1))$

We use $K_{m,n}(p)$ to denote the complete bipartite graph $K_{m,n}$ together with p horns.For example: $A = \{K_1, K_2, K_3\}$ together with the edges $I_1 - K_1, I_1 - K_2, I_1 - K_3$ is a horn at I_1 (Figure 1).

Theorem 2.1. [9, Theorem 2.4] For a ring R, $\varphi(R)$ is a simple, connected graph with diameter less than or equal to three.

Theorem 2.2. Any complete bipartite graph(which is not a star) is realizable as the graph $\varphi(R)$.

Proof. Let $G = K_{m,n}, m, n \ge 2$. Consider the ring $R = \mathbb{Z}_{2^m} \times \mathbb{Z}_{2^n}$ with maximal ideals $M_1 = \mathbb{Z}_{2^{m-1}} \times \mathbb{Z}_{2^n}$ and $M_2 = \mathbb{Z}_{2^m} \times \mathbb{Z}_{2^{n-1}}$. Clearly $I_i = \mathbb{Z}_{2^i} \times \mathbb{Z}_{2^n}, 0 \le i \le m-1$ and $J_j = \mathbb{Z}_{2^m} \times \mathbb{Z}_{2^j}, 0 \le j \le n-1$ are ideals contained in M_1 and M_2 , respectively, which none of I_i and J_j are contained in Jacobson radical of $R(J(R) = \mathbb{Z}_2 \times \mathbb{Z}_2)$. It is obvious that $V_1 = \{I_i, 0 \le i \le m-1\}$ and $V_2 = \{J_j, 0 \le j \le n-1\}$. Clearly, for each s and t, $I_s + I_t \ne R$ and $J_s + J_t \ne R$. To show that $\varphi(R) = K_{m,n}$, it is enough to prove $I_i + J_j = R$ for all $0 \le i \le m-1, 0 \le j \le n-1$. If $I_i = \mathbb{Z}_{2^i} \times \mathbb{Z}_{2^n}, J_j = \mathbb{Z}_{2^m} \times \mathbb{Z}_{2^j}$ and $(x, y) \in R$, we have $x \in \mathbb{Z}_{2^m}$ and $y \in \mathbb{Z}_{2^n}$. Hence $(x, 0) \in J_j$ and $(0, y) \in I_i$ and so $(x, y) \in I_i + J_j$. Therefore $I_i + J_j = R$.

Theorem 2.3. Any complete bipartite graph with a horn is not realizable as the graph $\varphi(R)$.

Proof. Let $V_1 = \{I_1, I_2, \ldots, I_m\}$ and $V_2 = \{J_1, J_2, \ldots, J_n\}$ be the two partitions. Let A be a horn at I_1 where $A = \{K_1, K_2, \ldots, K_p\}$. We have $I_i + J_j = R$ for all $i, j, I_1 + K_k = R$ for all $K_k \in A$ but $I_i + K_k \neq R$, for $i \neq 1$ and for all $K_k \in A, J_j + K_k \neq R$ for all $K_k \in A$. Let $i \neq 1$.

If $I_i + K_1 = I_i$, then $I_i + I_1 = I_i + I_1 + K_1 = R$, a contradiction since I_i and I_1 are not adjacent.

If $I_i + K_1 = I_1$, then $K_1 \subseteq I_1$, a contradiction since I_1 and K_1 are adjacent.

If $I_i + K_1 = K_k$, then $K_k + J_j = K_1 + I_i + J_j = R$, which contradicts the fact that K_k and J_j are not adjacent.

If $I_i + K_1 = J_j$, then $I_i \subseteq J_j$, a contradiction since I_i and J_j are adjacent.

Therefore $I_i + K_1$ for $i \neq 1$ does not exist. Hence $K_{m,n}(1)$ is not realizable as $\varphi(R)$.

Theorem 2.4. Any complete bipartite graph with p horns $(p \ge 2)$ is not realizable as the graph $\varphi(R)$.

Proof. $V_1 = \{I_1, I_2, ..., I_m\}$ and $V_2 = \{J_1, J_2, ..., J_n\}$ be the two partitions.

Let A and B be the two horns at I_1 and J_1 respectively where $A = \{K_1, K_2, \ldots, K_r\}$ and $B = \{L_1, L_2, \ldots, L_p\}$. We have $I_i + J_j = R_{,1} + K_1 = R_{,1} + L_1 = R_{,i} + K_1 \neq R$, $J_j + L_1 \neq R$ for all $i, j \neq 1$, $K_1 + L_1 \neq R$, $K_k + J_1 \neq R$ for all $k = 1, 2, \ldots, r$ and $L_q + I_1 \neq R$ for all $q = 1, 2, \ldots, p$.

If $K_1 + L_1 = K_k$, then $K_k + J_1 = K_1 + L_1 + J_1 = R$, a contradiction since K_k and J_1 are not adjacent. If $K_1 + L_1 = L_q$, then $L_q + I_1 = K_1 + L_1 + I_1 = R$, which is a contradiction as L_q and I_1 are not adjacent. If $K_1 + L_1 = I_i$, then $I_i + I_1 = K_1 + L_1 + I_1 = R$, a contradiction since I_i and I_1 are not adjacent. If $K_1 + L_1 = J_j$, then $J_j + J_1 = K_1 + L_1 + J_1 = R$, a contradiction since J_j and J_1 are not adjacent.

Hence $K_1 + L_1$ does not exist.

Now let A and B be the two horns at I_1 and I_2 respectively where $A = \{K_1, K_2, \ldots, K_r\}$ and $B = \{L_1, L_2, \ldots, L_p\}$. It is obvious that $K_1 - I_1 - J_1 - I_2 - L_1$ is the shortest path between K_1 and L_1 which is of length 4. So $d(K_1, L_1) = 4$, which is a contradiction to the Theorem 2.1. Therefore $K_{m,n}(p), p \ge 2$ is not realizable as the graph $\varphi(R)$.

Theorem 2.5. Let G be a triangle free graph with diam(G) > 2 and C_4 with two pendant vertices as a subgraph. Then G can not be realized as the graph $\varphi(R)$.

Proof. Let diam(G) > 2. Let $I_1 - I_2 - I_3 - I_4 - I_1$ be a cycle of length four with two pendant J_1 and J_2 at I_1 and I_2 , respectively. We have $J_1 + J_2 \neq R$.

If $J_1 + J_2 = I_1$, then $J_1 \subseteq I_1$, which is a contradiction, since I_1 and J_1 are adjacent.

If $J_1 + J_2 = I_3$, then $I_3 + I_1 = J_1 + J_2 + I_1 = R$, which is a contradiction, since I_1 and I_3 are not adjacent. If $J_1 + J_2 = I_4$, then $I_4 + I_2 = J_1 + J_2 + I_2 = R$, which is a contradiction, since I_2 and I_4 are not adjacent. If $J_1 + J_2 = J_1$, then $J_1 + I_2 = J_1 + J_2 + I_2 = R$, which is a contradiction, since J_1 and I_2 are not adjacent.

If $J_1 + J_2 = J_2$, then $I_1 + J_2 = I_1 + J_1 + J_2 = R$, which is a contradiction, since I_1 and J_2 are not adjacent.

Hence $J_1 + J_2$ does not exist.

Now let $J_1 + J_2 = I$. Then $J_1 \subseteq I$ and $J_2 \subseteq I$ which implies that $R = J_1 + I_1 \subseteq I + I_1$ and $R = J_2 + I_2 \subseteq I + I_2$. Hence I is common neighbour of I_1 and I_2 , which is a contradiction, since G is triangle free.

If we assume that J_1 and J_2 are pendant at I_1 and I_3 or I_2 and I_4 , then $d(J_1, J_2) = 4$, which is a contradiction, since $diam(\varphi(R)) \leq 3$, by Theorem 2.1. Therefore G is not realizable as the graph $\varphi(R)$. \Box

3. Planar line graph of $\varphi(R)$

Let J(R) be Jacobson radical of R. R is said to be local if it has a unique maximal ideal. Let Max(R)be the set of maximal ideals of R and |Max(R)| denote the number of maximal ideals of R. For any maximal ideal M of R, \mathcal{M} denotes the set of nonzero ideals contained in M and $|\mathcal{M}|$ denotes the number of ideals contained in M. In this section, we investigate the planarity of the line graph associated to the graph $\varphi(R)$. In particular, $L(\varphi(R))$ will have vertices of the form $I_{i,j}$ such that I_i and I_j are proper ideals of R which are not contained in J(R) where $I_i + I_j = R$.

Theorem 3.1. [Lemma 2.6]5 A non-empty graph G has a planar line graph L(G) if and only if

- (i) G is planar,
- (ii) $\Delta(G) \leq 4$,
- (iii) if deg(v) = 4, then v is a cut-vertex in the graph G.

If |Max(R)| = 1, then $\varphi(R)$ is an empty graph, by [9, Proposition 2.1(1)]. Hence $L(\varphi(R))$ is a null graph. Now suppose that |Max(R)| = r and M_1, M_2, \ldots, M_r be distinct maximal ideals of R. Set $V_i := \mathcal{M}_i \setminus \bigcup_{j \neq i} \mathcal{M}_j$, where $1 \leq j \neq i \leq r$. It is obvious that $|V_i| \geq 1$, since $M_i \in V_i$.

Lemma 3.2. If $L(\varphi(R))$ is planar, then $|Max(R)| \leq 4$.

Proof. Assume to the contrary that $|Max(R)| \ge 5$ and M_1, \ldots, M_5 be distinct maximal ideals of R. $\varphi(R)$ contains K_5 as a subgraph. Hence $\varphi(R)$ is not planar. Therefore $L(\varphi(R))$ is not planar, by Theorem 3.1, which is a contradiction. Thereby $|Max(R)| \le 4$.

Now the only remaining cases for planarity of $L(\varphi(R))$ are $|Max(R)| \leq 4$.

Theorem 3.3. Suppose that |Max(R)| = 2. Then $L(\varphi(R))$ is planar if and only if $|\bigcup_{i=1}^{2} V_i| \le 5$.

Proof. (\Rightarrow) : Suppose that $L(\varphi(R))$ is planar and assume to the contrary that $|\bigcup_{i=1}^2 V_i| \ge 6$. Since |Max(R)| = 2, $\varphi(R)$ is a complete bipartite graph, by [9, Lemma 4.1]. If $\varphi(R)$ is a star graph, then $L(\varphi(R))$ contains a subgraph isomorphic to K_5 (the line graph of star graphs are complete graphs), which is not planar. Now, if $\varphi(R)$ is not a star graph, then it contains a subgraph isomorphic to $K_{2,4}$ or $K_{3,3}$. If $\varphi(R)$ contains a subgraph isomorphic to $K_{2,4}$, then $\varphi(R)$ has a vertex of degree four which is not a cut-vertex. If $\varphi(R)$ contains a subgraph isomorphic to $K_{3,3}$, then $\varphi(R)$ is not planar. In these two cases, according to Theorem 3.1, $L(\varphi(R))$ is not planar, which is a contradiction.

(\Leftarrow): Assume that $|\bigcup_{i=1}^2 V_i| \leq 5$. If $|\bigcup_{i=1}^2 V_i| = 2$, then $L(\varphi(R)) \cong L(K_2) \cong K_1$. If $|\bigcup_{i=1}^2 V_i| = 3$, then $L(\varphi(R)) \cong L(K_{1,2}) \cong K_2$. Now assume that $|\bigcup_{i=1}^2 V_i| = 4$. Then $L(\varphi(R)) \cong L(K_{1,3}) \cong K_3$ or $L(\varphi(R)) \cong L(K_{2,2}) \cong K_{2,2}$ (or $\cong C_4$) and lastly, assume that $|\bigcup_{i=1}^2 V_i| = 5$. If $\varphi(R)$ is a star graph, then $L(\varphi(R)) \cong k_4$. Otherwise, $L(\varphi(R)) \cong L(K_{2,3}) \cong Y_3$ (Triangular prism graph) (Figure 2).

Assume that |Max(R)| = 3 and M_1, M_2 and M_3 be distinct maximal ideals of R. Set $V_i := \mathcal{M}_i \setminus \bigcup_{j \neq i} \mathcal{M}_j$, $V_{i_1 i_2} := (\mathcal{M}_{i_1} \cap \mathcal{M}_{i_2}) \setminus \mathcal{M}_j$ for j_1, j_2 and $1 \leq i_1 < i_2 \leq 3$.

By the above notations, we have the following lemma and theorem.

Lemma 3.4. Suppose that |Max(R)| = 3. If $L(\varphi(R))$ is planar, then $|\bigcup_{i=1}^{3} V_i| \le 4$.

Proof. Assume to the contrary that $|\bigcup_{i=1}^{3} V_i| \geq 5$. Then $\varphi(R)$ contains a subgraph isomorphic to $K_{3,1,1}$ or $K_{2,2,1}$. Therefore $\varphi(R)$ has a vertex of degree four which is not a cut-vertex (Figure 3 and Figure 4). According to Theorem 3.1, $L(\varphi(R))$ is not planar, which is a contradiction.

Theorem 3.5. Suppose that |Max(R)| = 3. Then $L(\varphi(R))$ is planar if and only if one of the following conditions hold:

- (a) $|\bigcup_{i=1}^{3} V_i| = 3$ and $|V_{ij}| \le 2$, for $1 \le i, j \le 3$. (b) $|\bigcup_{i=1}^{3} V_i| = 4$ and $|V_{ij}| \le 1$, for $1 \le i, j \le 3$.

Proof. (\Rightarrow): Suppose that $L(\varphi(R))$ is planar. Then $|\bigcup_{i=1}^{3} V_i| \leq 4$, by Lemma 3.4. Hence we have the following cases:

Case(1): $|\bigcup_{i=1}^{3} V_i| = 3$. For some $i, j, |V_{ij}| \ge 3$. Without loss of generality assume that $|V_{12}| = 3$, then I_3 has degree five in $\varphi(R)$ (Figure 5). Hence $L(\varphi(R))$ is not planar, by Theorem 3.1.

Case(2): $|\bigcup_{i=1}^{3} V_i| = 4$. Without loss of generality, assume that $|V_2| = 2$. If $|V_{12}|$ or $|V_{23}| \ge 2$, then $\varphi(R)$ has at least a vertex of degree five (Figure 6). Hence $L(\varphi(R))$ is not planar. If $|V_{13}| \ge 2$, then $\varphi(R)$ has a vertex of degree four which is not a cut-vertex (Figure 7).

Figure 7

(\Leftarrow): Assume that $|\bigcup_{i=1}^{3} i| = 3$ and $|V_{ij}| \leq 2$. Hence the graph $\varphi(R)$ satisfies the properties of Theorem **3.1** (Figure 8). So $L(\varphi(R))$ is planar.

Figure 8

Now, let $|\bigcup_{i=1}^{3} V_i| = 4$ and $|V_1| = 2$, $|V_{ij}| \le 1$. Then the graph $\varphi(R)$ satisfies the properties of Theorem **3.1** (Figure 9). Hence $L(\varphi(R))$ is planar.

Figure 9

Lemma 3.6. If $L(\varphi(R))$ is planar, then $|\bigcup_{i=1}^{4} V_i| = 4$.

Proof. Assume to the contrary that $|\bigcup_{i=1}^{4} V_i| \ge 5$. Hence we have the following cases: Case(1): For only one V_i , $|V_i| \ge 2$ and $|V_j| = 1$ for all $j \ne i$, where $1 \le i, j \le 4$. Without loss of generality, assume that $|V_1| = 2$. Then $\varphi(R)$ has a vertex of degree four which is not a cut-vertex (Figure 10).

Figure 10

Figure 11

Case(2): For at least two V_i , $|V_i| \ge 2$. Now let without loss of generality, $|V_1| = |V_3| = 2$. Then I_1 has degree four which is not a cut-vertex or I_3 has degree five in $\varphi(R)$ (Figure 11). In these two cases, $L(\varphi(R))$ is not planar, by Theorem 3.1, which is a contradiction.

Now, Suppose that |Max(R)| = 4. Set

$$V_{i} := \mathcal{M}_{i} \setminus \bigcup_{j \neq i} \mathcal{M}_{j}, \ V_{i_{1}i_{2}} := (\mathcal{M}_{i_{1}} \bigcap \mathcal{M}_{i_{2}}) \setminus \bigcup_{j \neq i_{1}, i_{2}} \mathcal{M}_{j}$$
$$V_{i_{1}i_{2}i_{3}} := (\mathcal{M}_{i_{1}} \bigcap \mathcal{M}_{i_{2}} \bigcap \mathcal{M}_{i_{3}}) \setminus \mathcal{M}_{j}$$

for $j \neq i_1, i_2, i_3, 1 \le i, j \le 4$, where $1 \le i_1 < i_2 < i_3 \le 4$.

Theorem 3.7. Suppose that |Max(R)| = 4. Then $L(\varphi(R))$ is planar if and only if $V_{ij} = \emptyset$ and $|V_{ijk}| \le 1$, for all $1 \le i, j, k \le 4$.

Proof. Assume that $L(\varphi(R))$ is planar. Then $|\bigcup_{i=1}^{4} V_i| = 4$, by Lemma 3.6. If $|V_{ij}| \ge 1$, for some $1 \le i, j \le 4$, I_4 has degree four which is not cut-vertex (Figure 12). Therefore $L(\varphi(R))$ is not planar.

Figure 12

Now suppose that for only one V_{ijk} , $|V_{ijk}| \ge 2$, where $1 \le i, j, k \le 4$. Then $\varphi(R)$ has a vertex of degree five (Figure 13). Hence by Theorem 3.1, $L(\varphi(R))$ is not planar.

Figure 13

Conversely, suppose that $V_{12} = V_{13} = V_{23} = \emptyset$ and V_{ijk} has at most one element. Hence $\varphi(R)$ satisfies the properties of Theorem 3.1 (Figure 14) and proof is complete.

Figure 14

Acknowledgement

The authors wish to thank the referee for careful reading the article and helpful suggestions.

References

- M. Azadi, Z. Jafari and Ch. Eslahchi, On the Comaximal ideal graph of a commutative ring, *Turkish J. Math.*, 40 (2016) 905–913.
- [2] R. Diestel, Graph Theory, Graduate Texts in Mathematics, 173, Springer-Verlag, New York, 2000.
- [3] F. Harary, Graph Theory, Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-London, 1969.
- [4] H. R. Maimani, M. Salimi, A. Sattari and S. Yassemi, Comaximal graph of commutative rings, J. Algebra, 319 (2008) 1801–1808.
- [5] J. Sedlacek, Some properties of interchange graphs, Theory of graphs and its applications, Academic Press, 1964 145–150.
- [6] P. K. Sharma and S. M. Bhatwadekar, A note on graphical representation of rings, J. Algebra, 176 (1995) 124–127.
- [7] J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Second edition, Cambridge University Press, Cambridge, 2001.
- [8] W. Weisstein, Line Graph, From MathWorld-A Wolfrom WebResource.
- [9] M. Ye and T. S. Wu, Comaximal ideal graphs of Commutative Rings, Journal of Algebra and Its Applications, 11 no. 6 (2012) pp. 14.

Mehrdad Azadi

Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran Email: meh.azadi@iauctb.ac.ir

Zeinab Jafari

Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran Email: zei.jafari.sci@iauctb.ac.ir