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Abstract. Let R be a commutative ring with identity. We use φ(R) to denote the comaximal ideal graph.

The vertices of φ(R) are proper ideals of R which are not contained in the Jacobson radical of R, and two

vertices I and J are adjacent if and only if I + J = R. In this paper we show some properties of this graph

together with planarity of line graph associated to φ(R).

1. Introduction

For the sake of completeness, we explain some definitions and points used throughout of the paper.

A graph with vertex set V is said to be a graph on V . The vertex set of a graph G is referred to as

V (G), its edge set as E(G). Let v be a vertex of G. The degree of v, d(v), is the number of edges

incident to v. An isolated vertex is a vertex with zero degree. The maximum degree of G is defined as

∆(G) = max{dG(v)|v ∈ G}. A graph with no edges is called an empty graph. A graph with no vertices

and no edges is called a null graph. A vertex v of G is called a pendant vertex in case the degree of v is

one. All pendant vertices which are adjacent to the same vertex of G together with edges is called a horn.

A graph G is said to be connected if there is at least one path between every pair of vertices in G and

the distance between two vertices v and w, d(v, w), is the length of the shortest path connecting them.

The diameter of a connected graph is the maximum of the distances between vertices. A graph in which

each pair of distinct vertices is joined by an edge is called complete graph. We denote by Kn a complete

graph with n vertices. An acyclic graph is a graph having no cycles. A connected acyclic graph is called

a tree. Acyclic graphs are usually called forests. An n − partite graph is one whose vertex set can be

partitioned into n subsets so that no edge has both ends in any one subset. If G be a bipartite graph which

its vertex set is partitioned into two sets X and Y and every vertex in X is joined to every vertex in Y,
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then G is called a complete bipartite graph. If |X| = m and |Y | = n, we show this complete bipartite

graph by Km,n. A star is a complete bipartite graph with |X| = 1 or |Y | = 1. A graph is said to be planar

if it can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph is

any graph that can be obtained from the original graph by replacing some edges by paths. Kuratowski’s

theorem says that a graph is planar if and only if it contains no subdivision of K5 or K3,3 [2, Theorem

4.4.6]. A subgraph of G is a graph H such that V (H) ⊆ V (G), E(H) ⊆ E(G). A component of G is a

maximal connected subgraph of G. A cut− vertex of G, is a vertex that when removed (with its boundary

edges) from G, creates a graph with more components than previously in G. The line graph of G (also

called an interchange graph or edge graph), denoted L(G), is defined by V (L(G)) = E and e1e2 ∈ E(L(G))

if and only if e1 and e2 share a common vertex in G. A general prism is a polyhedron possessing two

congruent polygonal faces and with all remaining faces parallelograms. An n − prism graph, denote Yn,

and sometimes also called circular ladder graph and denoted CLn, is a graph that has one of the prisms as

its skeleton. N-prism graphs are therefore both planar and polyhedral. An n-prism graph has 2n vertices

and 3n edges. A cycle graph, Cn, is a graph on n vertices containing a single cycle through all vertices [8].

From now on let R be a commutative ring with identity. In [6], Sharma and Bhatwadekar defined a

graph on R, with vertices as elements of R, where two distinct vertices a and b are adjacent if and only if

Ra+Rb = R.

Later, Maimani et. al. [4], studied a subgraph of the graph structure defined by Sharma and Bhatwadekar

named such graph structure “Comaximal Graphs”. They considered the subgraph of Sharma’s graph,

Γ2(R), which consists of all non-unit elements of R.

In [9], Ye and Wu defined comaximal ideal graph, φ(R), with vertices as proper ideals of R which are

not contained in the Jacobson radical of R, and two vertices I and J are adjacent if and only if I +J = R.

Recently, in [1], the planarity and perfection of this graph were studied.

In this paper, we obtain some properties of φ(R) and we investigate the planarity of line graph associated

to φ(R).

2. Properties of φ(R)

In this section, we investigate that complete bipartite graphs with p horns can not realizable as the

graph φ(R).

Figure 1: A complete bipartite graph together with a horn (Km,n(1))



Trans. Comb. 6 no. 1 (2017) 29-37 M. Azadi and Z. Jafari 31

We use Km,n(p) to denote the complete bipartite graph Km,n together with p horns.For example:

A = {K1,K2,K3} together with the edges I1 −K1, I1 −K2, I1 −K3 is a horn at I1 (Figure 1).

Theorem 2.1. [9, Theorem 2.4] For a ring R, φ(R) is a simple, connected graph with diameter less than

or equal to three.

Theorem 2.2. Any complete bipartite graph(which is not a star) is realizable as the graph φ(R).

Proof. Let G = Km,n, m,n ≥ 2. Consider the ring R = Z2m ×Z2n with maximal ideals M1 = Z2m−1 ×Z2n

and M2 = Z2m × Z2n−1 . Clearly Ii = Z2i × Z2n , 0 ≤ i ≤ m − 1 and Jj = Z2m × Z2j , 0 ≤ j ≤ n − 1 are

ideals contained in M1 and M2, respectively, which none of Ii and Jj are contained in Jacobson radical of

R (J(R) = Z2 ×Z2). It is obvious that V1 = {Ii, 0 ≤ i ≤ m− 1} and V2 = {Jj , 0 ≤ j ≤ n− 1}. Clearly, for
each s and t, Is + It ̸= R and Js + Jt ̸= R. To show that φ(R) = Km,n, it is enough to prove Ii + Jj = R

for all 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1. If Ii = Z2i × Z2n , Jj = Z2m × Z2j and (x, y) ∈ R, we have x ∈ Z2m

and y ∈ Z2n . Hence (x, 0) ∈ Jj and (0, y) ∈ Ii and so (x, y) ∈ Ii + Jj . Therefore Ii + Jj = R. □

Theorem 2.3. Any complete bipartite graph with a horn is not realizable as the graph φ(R).

Proof. Let V1 = {I1, I2, . . . , Im} and V2 = {J1, J2, . . . , Jn} be the two partitions. Let A be a horn at I1

where A = {K1,K2, . . . ,Kp}. We have Ii+Jj = R for all i, j, I1+Kk = R for all Kk ∈ A but Ii+Kk ̸= R,

for i ̸= 1 and for all Kk ∈ A, Jj +Kk ̸= R for all Kk ∈ A. Let i ̸= 1.

If Ii +K1 = Ii, then Ii + I1 = Ii + I1 +K1 = R, a contradiction since Ii and I1 are not adjacent.

If Ii +K1 = I1, then K1 ⊆ I1, a contradiction since I1 and K1 are adjacent.

If Ii +K1 = Kk, then Kk + Jj = K1 + Ii + Jj = R, which contradicts the fact that Kk and Jj are not

adjacent.

If Ii +K1 = Jj , then Ii ⊆ Jj , a contradiction since Ii and Jj are adjacent.

Therefore Ii +K1 for i ̸= 1 does not exist. Hence Km,n(1) is not realizable as φ(R). □

Theorem 2.4. Any complete bipartite graph with p horns (p ≥ 2) is not realizable as the graph φ(R).

Proof. V1 = {I1, I2, . . . , Im} and V2 = {J1, J2, . . . , Jn} be the two partitions.

Let A and B be the two horns at I1 and J1 respectively where A = {K1,K2, . . . ,Kr} and B =

{L1, L2, . . . , Lp}. We have Ii + Jj = R,1+K1 = R,1+L1 = R,i+K1 ̸= R, Jj + L1 ̸= R for all i, j ̸= 1,

K1 + L1 ̸= R, Kk + J1 ̸= R for all k = 1, 2, . . . , r and Lq + I1 ̸= R for all q = 1, 2, . . . , p.

If K1 + L1 = Kk, then Kk + J1 = K1 + L1 + J1 = R, a contradiction since Kk and J1 are not adjacent.

If K1+L1 = Lq, then Lq+I1 = K1+L1+I1 = R, which is a contradiction as Lq and I1 are not adjacent.

If K1 + L1 = Ii, then Ii + I1 = K1 + L1 + I1 = R, a contradiction since Ii and I1 are not adjacent.

If K1 + L1 = Jj , then Jj + J1 = K1 + L1 + J1 = R, a contradiction since Jj and J1 are not adjacent.

Hence K1 + L1 does not exist.

Now let A and B be the two horns at I1 and I2 respectively where A = {K1,K2, . . . ,Kr} and B =

{L1, L2, . . . , Lp}. It is obvious that K1 − I1 − J1 − I2 − L1 is the shortest path between K1 and L1 which

is of length 4. So d(K1, L1) = 4, which is a contradiction to the Theorem 2.1. Therefore Km,n(p), p ≥ 2

is not realizable as the graph φ(R). □
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Theorem 2.5. Let G be a triangle free graph with diam(G) > 2 and C4 with two pendant vertices as a

subgraph. Then G can not be realized as the graph φ(R).

Proof. Let diam(G) > 2. Let I1 − I2 − I3 − I4 − I1 be a cycle of length four with two pendant J1 and J2

at I1 and I2, respectively. We have J1 + J2 ̸= R.

If J1 + J2 = I1, then J1 ⊆ I1, which is a contradiction, since I1 and J1 are adjacent.

If J1+J2 = I3, then I3+I1 = J1+J2+I1 = R, which is a contradiction, since I1 and I3 are not adjacent.

If J1+J2 = I4, then I4+I2 = J1+J2+I2 = R, which is a contradiction, since I2 and I4 are not adjacent.

If J1 + J2 = J1, then J1 + I2 = J1 + J2 + I2 = R, which is a contradiction, since J1 and I2 are not

adjacent.

If J1 + J2 = J2, then I1 + J2 = I1 + J1 + J2 = R, which is a contradiction, since I1 and J2 are not

adjacent.

Hence J1 + J2 does not exist.

Now let J1 + J2 = I. Then J1 ⊆ I and J2 ⊆ I which implies that R = J1 + I1 ⊆ I + I1 and

R = J2 + I2 ⊆ I + I2. Hence I is common neighbour of I1 and I2, which is a contradiction, since G is

triangle free.

If we assume that J1 and J2 are pendant at I1 and I3 or I2 and I4, then d(J1, J2) = 4, which is a

contradiction, since diam(φ(R)) ≤ 3, by Theorem 2.1. Therefore G is not realizable as the graph φ(R). □

3. Planar line graph of φ(R)

Let J(R) be Jacobson radical of R. R is said to be local if it has a unique maximal ideal. Let Max(R)

be the set of maximal ideals of R and |Max(R)| denote the number of maximal ideals of R. For any

maximal ideal M of R, M denotes the set of nonzero ideals contained in M and |M| denotes the number

of ideals contained in M . In this section, we investigate the planarity of the line graph associated to the

graph φ(R). In particular, L(φ(R)) will have vertices of the form Ii,j such that Ii and Ij are proper ideals

of R which are not contained in J(R) where Ii + Ij = R.

Theorem 3.1. [Lemma 2.6]5 A non-empty graph G has a planar line graph L(G) if and only if

(i) G is planar,

(ii) ∆(G) ≤ 4,

(iii) if deg(v) = 4, then v is a cut-vertex in the graph G.

If |Max(R)| = 1, then φ(R) is an empty graph, by [9, Proposition 2.1(1)]. Hence L(φ(R)) is a null

graph. Now suppose that |Max(R)| = r and M1,M2, . . . ,Mr be distinct maximal ideals of R. Set

Vi := Mi\
∪

j ̸=iMj , where 1 ≤ j ̸= i ≤ r. It is obvious that |Vi| ≥ 1, since Mi ∈ Vi.

Lemma 3.2. If L(φ(R)) is planar, then |Max(R)| ≤ 4.

Proof. Assume to the contrary that |Max(R)| ≥ 5 and M1, . . . ,M5 be distinct maximal ideals of R. φ(R)

contains K5 as a subgraph. Hence φ(R) is not planar. Therefore L(φ(R)) is not planar, by Theorem 3.1,

which is a contradiction. Thereby |Max(R)| ≤ 4. □

Now the only remaining cases for planarity of L(φ(R)) are |Max(R)| ≤ 4.
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Theorem 3.3. Suppose that |Max(R)| = 2. Then L(φ(R)) is planar if and only if |
∪2

i=1 Vi| ≤ 5.

Proof. (⇒): Suppose that L(φ(R)) is planar and assume to the contrary that |
∪2

i=1 Vi| ≥ 6. Since

|Max(R)| = 2, φ(R) is a complete bipartite graph, by [9, Lemma 4.1]. If φ(R) is a star graph, then

L(φ(R)) contains a subgraph isomorphic to K5(the line graph of star graphs are complete graphs), which

is not planar. Now, if φ(R) is not a star graph, then it contains a subgraph isomorphic to K2,4 or K3,3.

If φ(R) contains a subgraph isomorphic to K2,4, then φ(R) has a vertex of degree four which is not a

cut-vertex. If φ(R) contains a subgraph isomorphic to K3,3, then φ(R) is not planar. In these two cases,

according to Theorem 3.1, L(φ(R)) is not planar, which is a contradiction.

(⇐): Assume that |
∪2

i=1 Vi| ≤ 5. If |
∪2

i=1 Vi| = 2, then L(φ(R)) ∼= L(K2) ∼= K1. If |
∪2

i=1 Vi| = 3,

then L(φ(R)) ∼= L(K1,2) ∼= K2. Now assume that |
∪2

i=1 Vi| = 4. Then L(φ(R)) ∼= L(K1,3) ∼= K3 or

L(φ(R)) ∼= L(K2,2) ∼= K2,2( or ∼= C4) and lastly, assume that |
∪2

i=1 Vi| = 5. If φ(R) is a star graph, then

L(φ(R)) ∼= k4. Otherwise, L(φ(R)) ∼= L(K2,3) ∼= Y3 (Triangular prism graph) (Figure 2). □

φ(R) L(φ(R))

Figure 2

Assume that |Max(R)| = 3 andM1,M2 andM3 be distinct maximal ideals of R. Set Vi := Mi\
∪

j ̸=iMj ,

Vi1i2 := (Mi1

∩
Mi2)\Mj for j1, i2 and 1 ≤ i1 < i2 ≤ 3.

By the above notations, we have the following lemma and theorem.

Lemma 3.4. Suppose that |Max(R)| = 3. If L(φ(R)) is planar, then |
∪3

i=1 Vi| ≤ 4.

Proof. Assume to the contrary that |
∪3

i=1 Vi| ≥ 5. Then φ(R) contains a subgraph isomorphic to K3,1,1

or K2,2,1. Therefore φ(R) has a vertex of degree four which is not a cut-vertex (Figure 3 and Figure 4).

According to Theorem 3.1, L(φ(R)) is not planar, which is a contradiction. □

Figure 3 Figure 4
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Theorem 3.5. Suppose that |Max(R)| = 3. Then L(φ(R)) is planar if and only if one of the following

conditions hold:

(a) |
∪3

i=1 Vi| = 3 and |Vij | ≤ 2, for 1 ≤ i, j ≤ 3.

(b) |
∪3

i=1 Vi| = 4 and |Vij | ≤ 1, for 1 ≤ i, j ≤ 3.

Proof. (⇒): Suppose that L(φ(R)) is planar. Then |
∪3

i=1 Vi| ≤ 4, by Lemma 3.4. Hence we have the

following cases:

Case(1): |
∪3

i=1 Vi| = 3. For some i, j, |Vij | ≥ 3. Without loss of generality assume that |V12| = 3, then

I3 has degree five in φ(R) (Figure 5). Hence L(φ(R)) is not planar, by Theorem 3.1.

Figure 5 Figure 6

Case(2): |
∪3

i=1 Vi| = 4. Without loss of generality, assume that |V2| = 2. If |V12| or |V23| ≥ 2, then φ(R)

has at least a vertex of degree five (Figure 6). Hence L(φ(R)) is not planar. If |V13| ≥ 2, then φ(R) has a

vertex of degree four which is not a cut-vertex (Figure 7).

Figure 7

(⇐): Assume that |
∪3

i=1 i| = 3 and |Vij | ≤ 2. Hence the graph φ(R) satisfies the properties of Theorem

3.1 (Figure 8). So L(φ(R)) is planar.
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Figure 8

Now, let |
∪3

i=1 Vi| = 4 and |V1| = 2, |Vij | ≤ 1. Then the graph φ(R) satisfies the properties of Theorem

3.1 (Figure 9). Hence L(φ(R)) is planar. □

Figure 9

Lemma 3.6. If L(φ(R)) is planar, then |
∪4

i=1 Vi| = 4.

Proof. Assume to the contrary that |
∪4

i=1 Vi| ≥ 5. Hence we have the following cases: Case(1): For only

one Vi, |Vi| ≥ 2 and |Vj | = 1 for all j ̸= i, where 1 ≤ i, j ≤ 4. Without loss of generality, assume that

|V1| = 2. Then φ(R) has a vertex of degree four which is not a cut-vertex (Figure 10).

Figure 10 Figure 11
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Case(2): For at least two Vi, |Vi| ≥ 2. Now let without loss of generality, |V1| = |V3| = 2. Then I1 has

degree four which is not a cut-vertex or I3 has degree five in φ(R) (Figure 11). In these two cases, L(φ(R))

is not planar, by Theorem 3.1, which is a contradiction. □

Now, Suppose that |Max(R)| = 4. Set

Vi := Mi\
∪
j ̸=i

Mj , Vi1i2 := (Mi1

∩
Mi2)\

∪
j ̸=i1,i2

Mj ,

Vi1i2i3 := (Mi1

∩
Mi2

∩
Mi3)\Mj

for j ̸= i1, i2, i3, 1 ≤ i, j ≤ 4, where 1 ≤ i1 < i2 < i3 ≤ 4.

Theorem 3.7. Suppose that |Max(R)| = 4. Then L(φ(R)) is planar if and only if Vij = ∅ and |Vijk| ≤ 1,

for all 1 ≤ i, j, k ≤ 4.

Proof. Assume that L(φ(R)) is planar. Then |
∪4

i=1 Vi| = 4, by Lemma 3.6. If |Vij | ≥ 1, for some

1 ≤ i, j ≤ 4, I4 has degree four which is not cut-vertex (Figure 12). Therefore L(φ(R)) is not planar.

Figure 12

Now suppose that for only one Vijk, |Vijk| ≥ 2, where 1 ≤ i, j, k ≤ 4. Then φ(R) has a vertex of degree

five (Figure 13). Hence by Theorem 3.1, L(φ(R)) is not planar.

Figure 13
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Conversely, suppose that V12 = V13 = V23 = ∅ and Vijk has at most one element. Hence φ(R) satisfies

the properties of Theorem 3.1 (Figure 14) and proof is complete. □

Figure 14
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