A simple approach to order the multiplicative Zagreb indices of connected graphs

Document Type: Research Paper

Author

Department of Mathematics and Computer Science , Faculty of Khansar, Khansar, Iran

Abstract

The first ($\Pi_1$) and the second $(\Pi_2$) multiplicative Zagreb indices of a connected graph $G$‎, ‎with vertex set‎ ‎$V(G)$ and edge set $E(G)$‎, ‎are defined as $\Pi_1(G) = \prod_{u \in‎ ‎V(G)} {d_u}^2$ and $\Pi_2(G) = \prod_{uv \in‎‎E(G)} {d_u}d_{v}$‎, ‎respectively‎, ‎where ${d_u}$ denotes the degree of the vertex $u$‎. ‎In this paper we present a simple approach to order these indices for connected graphs on the same number of vertices‎. ‎Moreover‎, ‎as an application of this‎ ‎simple approach‎, ‎we extend the known ordering of the first and the second multiplicative Zagreb indices‎ ‎for some classes of connected graphs‎.

Keywords

Main Subjects


J. Braun, A. Kerber, M. Meringer and C. Rucker (2005). Similarity of molecular descriptors: The equivalence of Zagreb indices and walk counts. MATCH Commun. Math. Comput. Chem.. 54, 163-176
T. Dov{s}li'c, B. Furtula, A. Graovac, I. Gutman, S. Moradi and Z. Yarahmadi (2011). On vertex--degree--based molecular structure descriptors. MATCH Commun. Math. Comput. Chem.. 66, 613-626
I. Gutman (2011). Multiplicative Zagreb indices of trees. Bull. Int. Math. Virt. Inst.. 1, 13-19
I. Gutman and K. C. Das (2004). The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem.. 50, 83-92
I. Gutman and M. Ghorbani (2012). Some properties of the Narumi--Katayama index. Appl. Math. Lett.. 25 (10), 1435-1438
I. Gutman and N. Trinajsti'{c} (1972). Graph theory and molecular orbitals. Total $pi$-electron energy of alternant hydrocarbons. Chem. Phys. Lett.. 17, 535-538
M. Liu (2010). A Simple Approach to Order the First Zagreb Indices of Connected Graphs. MATCH Commun. Math. Comput. Chem.. 63, 425-432
M. Karelson (2000). Molecular Descriptors in QSAR/QSPR. Wiley, New York.
A. W. Marshall and I. Olkin (1979). Inequalities, Theory of Majorization. Academic Press, New York.
H. Narumi and M. Katayama (1984). Simple topological index. A newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons. Mem. Fac. Engin. Hokkaido Univ.. 16, 209-214
S. Nikoli'{c}, G. Kovav{c}evi'{c}, A. Miliv{c}evi'{c} and N. Trinajsti'{c} (2003). The Zagreb indices 30 years after. Croat. Chem. Acta. 76, 113-124
D. Vukiv{c}evi'c, I. Gutman, B. Furtula, V. Andova and D. Dimitrov (2011). Some observations on comparing Zagreb indices. MATCH Commun. Math. Comput. Chem.. 66, 627-645
K. Xu and H. Hua (2012). A Unified Approach to Extremal Multiplicative Zagreb Indices for Trees, Unicyclic and Bicyclic Graphs. MATCH Commun. Math. Comput. Chem.. 54, 241-256
B. Zhou (2004). Zagreb indices. MATCH Commun. Math. Comput. Chem.. 52, 113-118
B. Zhou and I. Gutman (2004). Relations between Wiener, hyper-Wiener and Zagreb indices. Chem. Phys. Lett.. 394, 93-95
B. Zhou and I. Gutman (2005). Further properties of Zagreb indices. MATCH Commun. Math. Comput. Chem.. 54, 233-239