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Abstract. Let R be a commutative ring and M an R-module. In this article, we introduce a new gen-

eralization of the annihilating-ideal graph of commutative rings to modules. The annihilating submodule

graph of M , denoted by G(M), is an undirected graph with vertex set A∗(M) and two distinct elements

N and K of A∗(M) are adjacent if N ∗K = 0. In this paper we show that G(M) is a connected graph,

diam(G(M)) ≤ 3, and gr(G(M)) ≤ 4 if G(M) contains a cycle. Moreover, G(M) is an empty graph

if and only if ann(M) is a prime ideal of R and A∗(M) ̸= S(M) \ {0} if and only if M is a uniform

R-module, ann(M) is a semi-prime ideal of R and A∗(M) ̸= S(M) \ {0}. Furthermore, R is a field if and

only if G(M) is a complete graph, for every M ∈ R−Mod. If R is a domain, for every divisible module

M ∈ R−Mod, G(M) is a complete graph with A∗(M) = S(M)\{0}. Among other things, the properties

of a reduced R-module M are investigated when G(M) is a bipartite graph.

1. Introduction

Throughout this article, all rings are commutative with identity and all modules are right unitary

modules. Let M be an R-module. For each subset X of M , ann(X) = {r ∈ R| Xr = 0}. Moreover,

for each submodule N of M , (N : M) = {r ∈ R : Mr ⊆ N}. In another conception of zero-divisor

graph for modules, Γ(MR), has been considered; for a right R-module M and x, y ∈ M , it is said that

x∗y = 0 provided that either x(yR : M) = 0 or y(xR : M) = 0, see [18]. Also Z(M) = {x ∈ M : x∗y =

0 for some y ∈ M} and Z(M)∗ = Z(M) \ {0}. The zero-divisor graph of an R-module M , denoted

by Γ(MR), is an undirected graph with vertex set Z(M)∗ and x, y ∈ Z(M)∗ are adjacent provided that

x∗ y = 0. Let G be an undirected graph. We say that G is connected if there is a path between any two
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distinct vertices. For distinct vertices x and y in G, the distance between x and y, denoted by d(x, y),

is the length of a shortest path connecting x and y (d(x, x) = 0 and d(x, y) = ∞ if no such path exists).

The diameter of G is

diam(G) = sup{d(x, y)|x and y are vertices of G}.

A cycle of length n in G is a path of the form x1 − x2 − x3 · · · − xn − x1, where xi ̸= xj when i ̸= j. We

define the girth of G, denoted by gr(G), as the length of a shortest cycle in G, provided G contains a

cycle; otherwise, gr(G) = ∞. A graph is complete if any two distinct vertices are adjacent. A complete

graph with n vertices is denoted by Kn. By a complete subgraph, we mean a subgraph which is complete

as a graph. The graph G is called bipartite provided that the set of vertices of G is the union of two non-

empty distinct subsets V1 and V2, such that no element of V1 or V2, is adjacent with another element

of V1 or V2, respectively. Assume that Km,n denote the complete bipartite graph on two nonempty

disjoint sets V1 and V2 with |V1| = m and |V2| = n (here m and n may be infinite cardinal numbers). A

K1,n graph is often called a star graph. Any unexplained terminology, and all the basic results on rings,

modules and graphs that are used in the sequel can be found in [1], [5], [20], [21] and [22]. In recent

decades, the zero-divisor graphs of commutative rings have been extensively studied by many authors,

see for example [3], [4], [6-11] and [17]. In [13] and [18] the authors have associated two different graphs

to an R-module M and studied the zero-divisor graph of Abelian groups in [14]. In [9], [15], and [16],

the graph of zero-divisors for commutative rings has been generalized to the annihilating-ideal graph of

commutative rings (two ideals I and J are adjacent if IJ = (0)).

2. Annihilating Submodule Graph

Definition 2.1. Let M be an R-module. The set of all submodules of M is denoted by S(M). For

two elements N and K in S(M), we say that N ∗ K = 0 provided that either N(K : M) = 0 or

K(N : M) = 0. The submodule N of M is called annihilating submodule provided that N ∗K = 0, for

some non-zero submodule K of M .

Definition 2.2. Let M be an R-module. Let A(M) be the set of all annihilating submodules of M .

The annihilating submodule graph of M , denoted by G(M), is an undirected graph with vertex set

A∗(M) = A(M) \ {0} and N,K ∈ A∗(M) are adjacent if N ∗K = 0.

If I is an ideal of a ring R, it is obvious that (I : R) = I. Then G(R) is precisely the annihilating-ideal

graph of commutative ring R, see [15]. Let R be a commutative Noetherian ring. For x, y ∈ R, we

say that x ∼ y if and only if ann(x) = ann(y). The relation “ ∼ ” is an equivalence relation. The

equivalence class of any element x ∈ R is denoted by [x]. In [19] and [11], it was attributed a graph to

R, denoted by ΓE(R), with vertex set Z∗
E(R) = {[x]| x ∈ R and ann(x) ̸= (0)}. Moreover, two distinct

elements [x], [y] ∈ Z∗
E(R) are adjacent if xy = 0. In the following proposition ΓE(Zn) is characterized,

for each positive integer n.

Proposition 2.3. For each positive integer n, ΓE(Zn) ∼= G(Zn).

DOI: http://dx.doi.org/10.22108/toc.2017.21462

http://dx.doi.org/10.22108/toc.2017.21462


Trans. Comb. 7 no. 1 (2018) 1-12 S. Safaeeyan 3

Proof. First we show that for each x, y ∈ Zn, annZn(x) = annZn(y) if and only if xZ = yZ. For this,

the “only if ” part is obvious. Conversely, since xZ and yZ are submodules of Z-module Zn, there exist

a, b ∈ Zn such that a, b divide n, xZ = aZ and yZ = bZ. Therefore there exist positive integers s, t ∈ Z
such that n = ta and n = sb. By hypothesis, since t ∈ annZn(x), t ∈ annZn(y) = annZn(b). Thus n|tb
and hence tb = nk = sbk, for some k ∈ Z. So s|t. By similar role we can show that t|s and hence t = s.

It shows that a = b and hence xZ = yZ. On the other hand it is easy to show that (xZ : Zn) = dZ,
where (x, n) = d. For this, assume that c ∈ (xZ : Zn). Then n|c−xb, for some b ∈ Z. Since both d|n and

d|x, d|c. Conversely, we know that if there exist p, q ∈ Z such that xp+ nq = d, then d ∈ xZ and hence

dZ ⊆ (xZ : Zn). By [18, Proposition 1.2], for each x, y ∈ Zn, x.y = 0 if and only if x(yZ : Zn) = 0. Then

the map ϕ : V (ΓE(Zn)) −→ A∗(Zn), by ϕ([x]) = xZ is an isomorphism between ΓE(Zn) and G(Zn). □

Example. In [18, Proposition 1.2], the authors have showed that Γ(Zn) as a ring is isomorphic to

Γ(Zn) as a Z-module.
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Figure 1 G(Z12)

In the following we state a lemma which has important influence in this paper.

Lemma 2.4. Let M be an R-module and N,K ∈ A∗(M). Then

(1) If N and K are adjacent in G(M), then for every non-zero submodule N ′ of N and every

non-zero submodule K ′ of K, N ′ ∗K ′ = 0.

(2) If N
∩

K = 0, then N ∗K = 0

Proof. (1). Since N ∗K = 0, either N(K : M) = 0 or K(N : M) = 0. Suppose that N(K : M) = 0.

Therefore

N ′(K ′ : M) ⊆ N(K ′ : M) ⊆ N(K : M) = 0,

as desired.

(2). Since N(K : M) ⊆ N ∩K, the verification is immediate. □

In [18, Theorem 1.9], the authors have shown that Γ(M) is an empty graph if and only if ann(M) is

a prime ideal of R and Z∗(M) ̸= M \ {0}. In the following result we will see “When is G(M) an empty

graph”.
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Proposition 2.5. Let M be an R-module. Then the following are equivalent.

(1) G(M) is an empty graph.

(2) ann(M) is a prime ideal of R and A∗(M) ̸= S(M) \ {0}.
(3) M is a uniform R-module, ann(M) is a semiprime ideal of R and A∗(M) ̸= S(M) \ {0}.

Proof. (1 → 2) Assume that G(M) is an empty graph and a, b ∈ R such that a.b ∈ ann(M) and neither

a ∈ ann(M) nor b ∈ ann(M). Then Ma and Mb are non-zero submodules of M such that

Ma(Mb : M) = M(Mb : M)a ⊆ Mba = 0.

Therefore Ma and Mb are in A∗(M), a contradiction.

(2 → 1) Suppose that N ∈ A∗(M). Then there exists a non-zero submoduleK ofM such that N ∗K = 0.

Hence either N(K : M) = 0 or K(N : M) = 0. Assume that N(K : M) = 0. Therefore M(N : M)(K :

M) = 0. Since ann(M) is a prime ideal of R, either (N : M) ⊆ ann(M) or (K : M) ⊆ ann(M).

Let (N : M) ⊆ ann(M). Then for each non-zero submodule E of M , we have E(N : M) = 0. Thus

E ∈ A∗(M) and hence A∗(M) = S(M) \ {0}, a contradiction.

(1 → 3) It is sufficient to show that MR is uniform. If N and K are non-zero submodules of M such

that N ∩K = 0, then by Lemma 2.4, N ∗K = 0 and hence N ∈ A∗(M), a contradiction.

(3 → 1) To the contrary, assume that N ∈ A∗(M). There exists K ∈ A∗(M) such that N ∗K = 0. Since

MR is uniform, N ∩K ̸= 0. By Lemma 2.4, (N ∩K)∗(N ∩K) = 0. Therefore (N ∩K)((N ∩K) : M) = 0

and hence M((N ∩ K) : M)((N ∩ K) : M) = 0. Consequently ((N ∩ K) : M)2 ⊆ ann(M). Since

ann(M) is a semiprime ideal of R, we have ((N ∩ K) : M) ⊆ ann(M). This implies that for each

non-zero submodule B of M , B((N ∩ K) : M) = 0 which implies that B ∗ (N ∩ K) = 0. Therefore

A∗(M) = S(M) \ {0}, a contradiction. □

When does G(M) contain a cycle The next result gives a partial answer to this question. As we see,

it happens when G(M) contains a path of length 4. In fact, when G(M) has a path of length 4, then

gr(G(M)) ≤ 4.

Proposition 2.6. Let M be an R-module. If G(M) has a path of length 4, then G(M) contains a cycle

of length less than or equal to 4.

Proof. Let N1 −N2 −N3 −N4 −N5 be a path in G(M). The following cases may happen.

(Case 1). If N2 ∩N4 = 0, then by Lemma 2.4(2), N2 ∗N4 = 0 and hence N2 −N3 −N4 −N2 is a cycle

of length 3.

(Case 2). If N2 ∩N4 ̸= 0 and N2 ∩N4 ̸∈ {N1, N2, N3, N4, N5}, then by Lemma 2.4(1), both (N2 ∩N4) ∗
N1 = 0 and (N2 ∩N4) ∗N3 = 0 and hence N1 −N2 −N3 −N2 ∩N4 −N1 is a cycle of length 4.

(Case 3). If N2 ∩N4 = N1, then by Lemma 2.4(1), since N2 ∗ N3 = 0, N3 ∗ (N2 ∩ N4) = N3 ∗N1 = 0

and hence N1 −N2 −N3 −N1 is a cycle of length 3.

(Case 4). If N2 ∩N4 = N2, then by Lemma 2.4(1), since N5 ∗ N4 = 0, N5 ∗ (N2 ∩ N4) = N5 ∗N2 = 0

and hence N2 −N3 −N4 −N5 −N2 is a cycle of length 4.
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(Case 5). If N2 ∩N4 = N3, then by Lemma 2.4(1), since N2 ∗ N1 = 0, N1 ∗ (N2 ∩ N4) = N1 ∗N3 = 0

and hence N1 −N2 −N3 −N1 is a cycle of length 3.

(Case 6). If N2 ∩N4 = N4, then by Lemma 2.4(1), since N1 ∗ N2 = 0, N1 ∗ (N2 ∩ N4) = N1 ∗N4 = 0

and hence N1 −N2 −N3 −N4 −N1 is a cycle of length 4.

(Case 7). If N2 ∩N4 = N5, then by Lemma 2.4(1), since N3 ∗ N4 = 0, N3 ∗ (N2 ∩ N4) = N3 ∗N5 = 0

and hence N3 −N4 −N5 −N3 is a cycle of length 3. □

Proposition 2.7. Let M be an R-module. Then

(1) G(M) is a connected graph.

(2) diam(G(M)) ≤ 3.

(3) If G(M) contains a cycle, then gr(G(M)) ≤ 4.

Proof. (1),(2). Let N and K be two distinct vertices of G(M). If N ∗K = 0, then N and K are adjacent

in G(M). Suppose that N ∗K ̸= 0. There exist non-zero submodules N ′ and K ′ of M such that both

N ∗N ′ = 0 and K ∗K ′ = 0. Just the following cases may happen.

(Case 1). If N ′ = K ′, then N −N ′ −K is a path of length two between N and K.

(Case 2). If N ′ ∗K ′ = 0, then N −N ′ −K ′ −K is a path of length three between N and K.

(Case 3). If N ′ ∗ K ′ ̸= 0, then by Lemma 2.4(2), N ′ ∩ K ′ ̸= 0. Again by Lemma 2.4(1), both

N ∗ (N ′ ∩K ′) = 0 and K ∗ (N ′ ∩K ′) = 0. Therefore N −N ′ ∩K ′ −K is a path of length two between

N and K. Thus G(M) is connected and diam(G(M)) ≤ 3.

(3). Assume that N1 −N2 − · · ·Nk −N1 is a cycle in G(M). If k ≤ 4, the proof is complete. If k ≥ 5,

then N1−N2−N3−N4−N5 is a path of length 4 and hence by Proposition 2.6, G(M) contains a cycle

of length less than or equal to 4. □

The rest of this section is devoted to the study of modules for which their annihilating submodule

graphs are complete graphs. The first result shows that, when is the annihilating submodule graph of

all R-modules complete.

Proposition 2.8. Let R be a ring. Then R is a field if and only if for each R-module M , G(M) is a

complete graph.

Proof. First, for each non-zero element r ∈ R we have ((0, r)R : R
M ⊕ R) ⊆ M , then for each non-zero

element x ∈ R
M , (x, 0)((0, r)R : R

M ⊕R) = 0. Since G( R
M ⊕R) is a complete graph, for non-zero elements

r, s ∈ R,

(0, r)((0, s)R :
R

M
⊕R) = 0.

On the other hand for each 0, 1 ̸= s ∈ R, Ms ⊆ ((0, s)R : R
M ⊕ R). Therefore (0, 1)Ms = 0 and hence

Ms = 0. Thus for each 0, 1 ̸= s ∈ R, Ms = M(1− s) = 0 and hence M = 0, as desired. □

Proposition 2.9. Let M be an R-module and {Si}ni=1 a family of isomorphic simple R-submodules of

M such that M = ⊕n
i=1Si. Then A∗(M) = S(M) \ {0} and G(M) is a complete graph.
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Proof. Since for each 1 ≤ i, j ≤ n, Si
∼= Sj , ann(Si) = ann(Sj). If N is a non-trivial submodule of M ,

then by [5, Lemma 9.1], there exists a subset I of {1, 2, . . . , n} such that M = N ⊕ (⊕i∈ISi). Therefore

ann(M) = ann(S1) ⊆ (N : M) = (N : N ⊕ (⊕i∈ISi)) = ann(⊕i∈ISi) = ann(S1).

Hence for each non-zero submodule K of M , K(N : M) = 0. Therefore any non-trivial submodule of

M is adjacent to any non-zero submodule of M in G(M). □

Corollary 2.10. Let M be a simple R-module. Then G(M ×M) is a complete graph.

Proof. Put M2 = M ×M , M1 = M ×{0} and M2 = {0}×M . Since M1 and M2 are isomorphic simple

submodules of M2 such that M2 = M1 ⊕M2, by Proposition 2.9, G(M ×M) is a complete graph. □

By [21, 3.16], an R-module M is called divisible provided that for each a ∈ R and m ∈ M , if

ann(a) ⊆ ann(m), there exists n ∈ M such that na = m. If M is a divisible R-module and a ∈ R

such that ann(a) = 0, then for each m ∈ M , ann(a) ⊆ ann(m) and hence m is divided by a. Therefore

Ma = M .

Proposition 2.11. Let R be a domain and M a divisible R-module. Then G(M) is a complete graph

with A∗(M) = S(M) \ {0}.

Proof. Since R is a domain, for each non-zero element t ∈ R, ann(t) = 0. Therefore divisibility of M

implies that Mt = M . Hence for each proper submodule N of M , (N : M) = 0, for, 0 ̸= t ∈ (N : M)

implies thatMt = M ⊆ N , a contradiction. Therefore A∗(M) = S(M)\{0} and for eachK,N ∈ A∗(M),

N ∗K = 0. □

Proposition 2.12. Let R be a domain which is not a field and M an R-module which has a non-zero

divisible submodule D. Then A∗(M) = S(M) \ {0}.

Proof. Assume that there exists d ∈ D such that D = dR. If 0 ̸= t ∈ ann(d), then 0 = dRt = Dt = D,

a contradiction. Then ann(d) = 0 and hence D = dR ∼= R as R-modules. Therefore RR is a divisible

module and hence for each non-zero element a ∈ R there exists b ∈ R such that a.b = 1. This implies

that R is a field. It is a contradiction. Therefore D is not simple. Assume that N is a non-trivial

submodule of D. If 0 ̸= t ∈ (N : D), then D = Dt ⊆ N , a contradiction. On the other hand

(N : M) ⊆ (N : D) = 0. Therefore for each non-zero submodule K of M , K(N : M) = 0. Hence

K ∈ A∗(M). □

In Lemma 2.4, we have already observed that if N ∩K = {0}, then N is adjacent to K. In the sequel,

we give a partial converse of the aforementioned observation. The reader is reminded that a homogeneous

component of a semisimple module is the direct sum of all the simple isomorphic submodules.

Proposition 2.13. Let M be a finitely generated semisimple R-module such that its homogenous com-

ponents are simple. Then for each pair of non-trivial submodules N and K of M , N ∗ K = 0 if and

only if N ∩K = 0
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Proof. Let M = ⊕n
i=1Si, where Si’s are non-isomorphic simple submodules of M . By Lemma 2.4,

the ”only if“ part is obvious. Conversely, assume that N and K are two non-zero submodules of M

such that N ∗ K = 0. By [5, Lemma 9.1], there exist subsets I and J of In = {1, 2, . . . , n} such that

M = N ⊕ (⊕i∈ISi) and M = K ⊕ (⊕j∈JSJ). Without loss of generality, suppose that N(K : M) = 0.

Then

(K : M) =
∩
j∈J

ann(Sj) ⊆ ann(N) =
∩

i∈In\I

ann(Si) ⊆ ann(N ∩K).

If N ∩K ̸= 0, then N ∩K contains a simple submodule S which is isomorphic to St for some t ∈ In \ J .
Therefore

∩
j∈J ann(Sj) ⊆ ann(S) = ann(St). Since ann(Si)’s are maximal ideals of R, ann(Sj) =

ann(St), for some j ∈ J and hence Sj
∼= St. Since the homogenous components of M are simple,

Sj = St = S, a contradiction. □

Theorem 2.14. Let S1 and S2 be two non-isomorphic simple submodules of M such that M = S1⊕S2.

Then G(M) is a complete bipartite graph. Moreover, V (G(M)) = V1
∪

V2, where for i = 1, 2, Vi =

{K ≤ M |K ∼= Si}.

Proof. Since any non-trivial submodule of M is a summand, S(M) \ {{0},M} ⊆ A∗(M). On the other

hand for each non-trivial submodule of M , say K, K(M : M) ̸= 0. Moreover, if M(K : M) = 0,

then (K : M) ⊆ ann(M) = ann(S1) ∩ ann(S2). Since (K : M) = ann(S1) or (K : M) = ann(S2)

and ann(Si)’s are maximal ideals of R, ann(S1) = ann(S2) and hence S1
∼= S2, a contradiction. Thus

S(M) \ {{0},M} = A∗(M). Now assume that N,K ∈ A∗(M) which are adjacent. By [5, Lemma 9.1],

N and K are simple submodules of M . Therefore N ∗ K = 0 implies that either ann(Kc) ⊆ ann(N)

or ann(N c) ⊆ ann(K) and hence N and K are not isomorphic. On the other hand if N and K are

non-isomorphic simple submodules of M , then N ∩K = 0 and hence by Lemma 2.4, N ∗K = 0. □

3. Bipartite and Star Graphs

In this section we want to consider the modules for which their annihilating submodule graphs are

bipartite. An R-module M is called reduced provided that for each m ∈ M and a ∈ R, ma2 = 0 implies

that ma = 0. The ring R is reduced if R is reduced as an R-module. The following theorem plays a

fundamental role in this section.

Theorem 3.1. Let M be a reduced R-module such that G(M) is a bipartite graph. Then, one of the

following cases may occur.

(1) U.dim(M) = 2.

(2) Soc(M) = S where S is a simple essential submodule of M (hence MR is uniform). Moreover,

in both cases, G(M) is a complete bipartite graph.

Proof. Assume that V1 and V2 are two non-empty subsets of A∗(M) such that A∗(M) = V1 ∪ V2,

V1 ∩ V2 = ∅ and no element of V1 or V2 is adjacent to another member of V1 or V2, respectively. Two

cases my happen.
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(Case 1). Assume that for each A ∈ V1 and B ∈ V2, A ∩B = 0. By Lemma 2.4, A and B are adjacent

in G(M). Therefore G(M) is a complete bipartite graph. If C is a non-zero submodule of M such that

C ∩ (A⊕B) = 0, then both C ∩A = 0 and C ∩B = 0. By Lemma 2.4(2), C ∗A = 0 and C ∗B = 0 and

hence C ∈ V1 ∩ V2, a contradiction. Hence A ⊕ B ⊆ess MR. On the other hand, if A′ and A′′ are two

non-zero submodules of A such that A′ ∩ A′′ = 0, then by Lemma 2.4, A′ ∗ B = A′′ ∗ B = A′ ∗ A′′ = 0

which implies that A′, A′′ ∈ V1 that are adjacent, a contradiction. Consequently, A and B are uniform

submodules of M such that A⊕B ⊆ess MR. This implies that U.dim(MR) = 2.

(Case 2). Assume that there exist N ∈ V1 and K ∈ V2 such that N ∩ K ̸= 0. Put S = N ∩ K.

By proposition 2.7, G(M) is a connected graph and hence there exist N ′ ∈ V2 and K ′ ∈ V1 such

that both N ∗ N ′ = 0 and K ∗ K ′ = 0. By Lemma 2.4(1), S ∗ N ′ = S ∗ K ′ = 0. If S ̸= N ′ and

S ̸= K ′, then S ∈ V1 ∩ V2, a contradiction. Assume that S = K ′. Since K ∗ K ′ = 0 and S is

a submodule of K, by Lemma 2.4(1), S ∗ K ′ = S ∗ S = 0. Therefore S(S : M) = 0 and hence

M(S : M)(S : M) = 0 and consequently (S : M)2 ⊆ ann(M). Since MR is reduced, (S : M) ⊆ ann(M).

Consequently, for each non-zero submodule A of M , we have A(S : M) = 0 and hence A ∗S = 0. Hence

A∗(M) = S(M) \ {0}. Since G(M) is bipartite and S is adjacent to any element of A∗(M), V1 = {S}
and V2 = A∗(M) \ {S} = S(M) \ {S, 0} and G(M) is a complete bipartite graph. Since N,K ′ ∈ V1,

N = K ′ = S. On the other hand, by Lemma 2.4, for each non-zero submodule A of N ∩ K = S, we

have A ∗K = 0 since K ∗K ′ = 0 and hence A ∈ V1. Therefore A = S. This implies that N ∩K = S

is a simple submodule of M . If there exists T ∈ V2 such that S ∩ T = 0, then with the same method

that was described in the proof of first part, it can be shown that U.dim(MR) = 2. Now, assume that

for each T ∈ V2, S ∩ T ̸= 0. Since S is simple and V2 = A∗(M) \ {S} = S(M) \ {S, 0}, Soc(MR) = S

and S is contained in any non-zero submodule of M . □

Corollary 3.2. (1) Let M be a reduced R-module such that G(M) is a bipartite graph. Then

U.dim(M) ≤ 2.

(2) Let R be a reduced ring which is not a domain. If G(R) is a bipartite graph, then U.dim(R) = 2.

(3) Let M be a reduced R-module such that G(M) is a tree. Then G(M) is a star graph.

Proof. (1) By Theorem 3.1, the verification is immediate.

(2). By part 1, U.dim(R) = 1 or U.dim(R) = 2. But U.dim(R) = 1 if and only if R is a domain.

Therefore U.dim(R) = 2.

(3). Since each tree is a bipartite graph, G(M) is bipartite. By Theorem 3.1, G(M) is a complete

bipartite graph. Since G(M) has no cycle, G(M) souled be a star graph. □

In [8, Theorem 2.2], it has been proved that for a reduced commutative ring R, gr(Γ(R)) = 4 if

and only if Γ(R) = Km,n with m,n ≥ 2. In [8, Theorem 2.4], it has been proved that for a reduced

commutative ring R, Γ(R) is nonempty with gr(Γ(R)) = ∞ if and only if Γ(R) = K1,n for some n ≥ 1.

Here we state and prove the analog of this result for G(M). We need an auxiliary lemma before giving

the proof of our proposition.
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Lemma 3.3. Let M be an R-module. If G(M) contains a cycle of odd length, then gr(G(M)) = 3.

Proof. Assume that K1 − K2 · · · − K2n − K2n+1 − K1 is a cycle of length 2n + 1 in G(M). We show

that there exist a k < n and a cycle of length 2k + 1 in G(M). Hence by induction the proof will be

complete. If K1 ∩K3 = 0, then by Lemma 2.4(2), K1 is adjacent to K3 and hence K1 −K2 −K3 −K1

is a cycle of length 3 in G(M). Now assume that K1 ∩K3 ̸= 0. The following cases may occur.

(Case 1). If K1 ∩K3 = K1, then by Lemma 2.4(1), K4 is adjacent to K1 and hence K1 −K4 −K5 −
· · · −K2n+1 −K1 is a cycle of length 2(n− 1) + 1 in G(M).

(Case 2). If K1 ∩K3 = K2, then by Lemma 2.4(1), K4 is adjacent to K2 and hence K2 −K3 −K4 −K2

is a cycle of length 3 in G(M).

(Case 3). If K1 ∩K3 = K3, then by Lemma 2.4(1), K2n+1 is adjacent to K3 and hence K3 −K4 −K5 −
· · · −K2n+1 −K3 is a cycle of length 2(n− 1) + 1 in G(M).

(Case 4). If K1 ∩K3 = K2m, for some 2 ≤ m ≤ n, then by Lemma 2.4(1), K2 is adjacent to K2m and

hence K2 −K3 −K4 − · · · −K2m −K2 is a cycle of length 2m− 1 = 2(m− 1) + 1 in G(M).

(Case 5). If K1 ∩ K3 = K2m+1, for some 2 ≤ m ≤ n, then by Lemma 2.4(1), K2 is adjacent to

K2m+1. If m = n, then K1 − K2 − K2n+1 − K1 is a cycle of length 3 in G(M). If m < n, then

K2 −K2m+1 −K2m+2 − · · · −K2n+1 −K1 −K2 is a cycle of length 2(n−m+ 1) + 1 in G(M).

(Case 6). If K1 ∩K3 ̸= Ki, for each 1 ≤ i ≤ 2n+ 1, then by Lemma 2.4(1), K4 and K2n+1 are adjacent

to K1 ∩K3 and hence K2n+1 −K1 ∩K3 −K4 − · · · −K2n −K2n+1 is a cycle of length 2(n− 1) + 1 in

G(M). □

Proposition 3.4. Let M be a reduced R-module such that A∗(M) ̸= S(M) \ {0}. Then

(1) gr(G(M)) = 4 if and only if G(M) = Km,n, for some m,n ≥ 2.

(2) gr(G(M)) = ∞ if and only if G(M) = K1,n, for some n ≥ 1.

Proof. (1). Assume that gr(G(M)) = 4. By Lemma 3.3, the length of any cycle in G(M) is even.

Then G(M) is a bipartite graph. Suppose that the set of vertices of G(M) is the union of two distinct

non-empty subsets V1 and V2. By Theorem 3.1, G(M) is complete bipartite. Since G(M) contains a

cycle of length 4, both |V1| and |V2| must be greater than or equal to 2. The converse is trivial.

(2). Since G(M) is a connected graph which has no cycle, G(M) is a tree and hence is a (complete)

bipartite graph. Since G(M) has no cycle, it must be a star graph. □

Corollary 3.5. Let R be a reduced (semiprime) ring. Then

(1) gr(G(R)) = 4 if and only if G(R) = Km,n, for some m,n ≥ 2.

(2) gr(G(R)) = ∞ if and only if G(R) = K1,n, for some n ≥ 1.

Proof. By Proposition 3.4, it is enough to show that A∗(R) ̸= S(R) \ {0}. It is clear that for each ideal

I of R, (I : R) = I. Therefore R ̸∈ A∗(R). □

In the following we investigate R-modules such that for which their annihilating submodule graphs

are star graphs.
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Proposition 3.6. Let M be a reduced R-module such that G(M) is a star graph. Then Soc(M) ̸= 0.

Moreover, either there exist a simple submodule S and a uniform submodule U of M such that S⊕U ⊆ess

M or there exists a simple submodule S of M which is contained in any non-zero submodule of M .

Proof. Since G(M) is a star graph, there exists S ∈ A∗(M) such that A∗(M) = V1∪V2, where V1 = {S}
and V2 = A∗(M) \ {S}. In addition, by Theorem 3.1, for each N,K ∈ V2, S ∗N = 0 and N ∗K ̸= 0. If

S′ is a non-zero submodule of S, then by Lemma 2.4, S′ ∗K = 0 for each K ∈ V2. Then S′ ∈ V1 = {S}.
Therefore S′ = S. It implies that S is a simple submodule of M . By Theorem 3.1, either S⊕U ⊆ess M ,

for a uniform submodule U of M or S is contained in any non-zero submodule of M . □

The ring R is called a right V-ring provided that every simple right R-module is injective. Commu-

tative ring R is a V-ring if and only if R is a Von-Neumann regular ring.

Corollary 3.7. Let R be a V-ring and M a reduced R-module. If G(M) is a star graph, then

U.dim(M) = 2.

Proof. By Proposition 3.6, Soc(M) ̸= 0. Let S be a simple submodule of M . Since R is a V-ring,

S is injective and hence it has no proper essential extension. Since G(M) is a star graph, S ̸= M .

Then by Proposition 3.6, there exist a simple submodule S and uniform submodule U of M such that

S ⊕ U ⊆ess M . □

Proposition 3.8. Let M be a finitely co-generated reduced R-module. If G(M) is a non-empty bipartite

graph, then either G(M) is a star graph with A∗(M) = S(M) \ {0} or there are simple submodules S1

and S2 of M such that A∗(M) = V1 ∪ V2, where for i = 1, 2, Vi = {N ∈ S(M) \ {0}|N ∩ Si = {0}}.

Proof. Assume that V1 and V2 are two non-empty subsets of A∗(M) such that A∗(M) = V1 ∪ V2,

V1 ∩ V2 = ∅ and no element of V1 or V2 is adjacent to another member of V1 or V2, respectively. Since

MR is finitely co-generated, Soc(M) ⊆ess M . On the other hand by Corollary 3.2, U.dim(M) ≤ 2.

Therefore either Soc(M) = S for some simple submodule S of M or Soc(M) = S1 ⊕ S2 for simple

submodules S1 and S2 of M . Suppose that Soc(M) = S and N ∈ A∗(M). There exists K ∈ A∗(M)

such that N ∗ K = 0. Since S ⊆ess M , both S ⊆ N and S ⊆ K. By Lemma 2.4(1), S ∗ S = 0.

Therefore S(S : M) = 0 and hence M(S : M)(S : M) = 0. It implies that (S : M)2 ⊆ ann(M).

Since MR is reduced, (S : M) ⊆ ann(M). Consequently, for each non-zero submodule A of M , we have

A(S : M) = 0. Therefore A ∗ S = 0. Hence A∗(M) = S(M) \ {0}.
Now, assume that Soc(M) = S1 ⊕ S2 for simple submodules S1 and S2 of M . By Lemma 2.4, S1, S2 ∈
A∗(M) which are adjacent. Without loss of generality, suppose that S1 ∈ V2 and S2 ∈ V1. If K ∈ V1 such

that K ∩ S1 ̸= 0, then S1 ⊆ K. By Theorem 3.1, G(M) is a complete bipartite graph and S1 ∗K = 0.

By Lemma 2.4, S1 ∗ S1 = 0 and as above (S1 : M) ⊆ ann(M). Therefore G(M) is a star graph with

V2 = {S1}. Now suppose that for each K ∈ V1 and N ∈ V2, K ∩ S2 = 0 and N ∩ S1 = 0, respectively.

By Lemma 2.4, for i = 1, 2, Vi = {N ∈ S(M) \ {0}|N ∩ Si = {0}}, for i = 1, 2. □
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