[1] M. Afkhami, K. Khashyarmanesh and Z. Rajabi, Some results on the annihilator graph of a commutative ring,
Czechoslovak Math. Journal,
67 (2017) 151–169.
[2] S. Akbari and A. Mohammadian, On zero-divisor graph of finite rings,
J. Algebra,
314 (2007) 168–184.
[3] M. Alizadeh, A. K. Das, H. R. Maimani, M. R. Pournaki and S. Yassemi, On the diameter and girth of zero-divisor graphs of posets,
Discrete Appl. Math.,
160 (2012) 1319–1324.
[4] D. D. Anderson and M. Naseer, Beck‘s coloring of a commutative ring,
J. Algebra,
159 (1993) 500-514.
[5] D. F. Anderson and P. Livingston, The zero-divisor graph of a commutative ring,
J. Algebra,
217 (1999) 434-447.
[6] D. F. Anderson and A. Badawi, The total graph of a commutative ring,
J. Algebra,
320 (2008) 2706–2719.
[7] D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph,
J. Pure Appl. Algebra,
210 (2007) 543–550.
[8] A. Badawi, On the annihilator graph of a commutative ring,
Comm. Algebra,
42 (2014) 108–121.
[9] I. Beck, Coloring of commutative rings,
J. Algebra,
116 (1988) 208–226.
[10] B. Bollobas and I. Rival, The maximal size of the covering graph of a lattice,
Algebra Univ.,
9 (1979) 371–373.
[11] J. Coykendal, S. Sather-Wagstaff, L. Sheppardson and S. Spiroff, On zero divisor graphs,
Progress in commutative Algebra,
2 (2012) 241–299.
[12] F. R. Demeyer, T. Mckenzie and K. Schneider, The zero divisor graph of a commutative semigroup,
Semigroup Forum,
65 (2002) 206–214.
[13] D. Duffus and I. Rival, Path length in the covering graph of a lattice,
Discrete Math.,
19 (1977) 139–158.
[14] S. Dutta and Ch. Lanong, On annihilator graphs of a finite commutative ring,
Trans. Comb.,
6 no. 1 (2017) 1-11.
[15] E. Estaji and K. Khashyarmanesh, The zero divisor graph of a lattice,
Results Math.,
61 (2012) 1–11.
[16] N. D. Filipov, Comparability graphs of partially ordered sets of different types,
Colloq. Math. Soc. Janos Bolyai,
33 (1980) 373–380.
[17] E. Gedeonova, Lattices whose covering graphs are S-graphs,
Colloq. Math. Soc. Janos Bolyai,
33 (1980) 407-435.
[18] G. Grätzer,
Lattice Theory: Foundation, Birkhauser, Basel, 2011.
[19] V. Joshi, Zero divisor graphs of a poset with respect to an ideal,
Order,
29 (2012) 499–506.
[20] V. Joshi and A. Khiste, On the zero divisor graphs of pm-lattices,
Discrete Math.,
312 (2012) 2076–2082.
[21] V. Joshi and S. Sarode, Diameter and girth of zero divisor graph of multiplicative lattices,
Asian-Eur. J. Math.,
9 (2016). http://dx.doi.org/10.1142/S1793557116500716.
[22] T. G. Lucas, The diameter of a zero divisor graph,
J. Algebra,
301 (2006) 174–193.
[23] M. J. Nikmehr, R. Nikandish and M. Bakhtyiari, More on the annihilator graph of a commutative ring,
Hokkaido Math. J.,
46 (2017) 107–118.
[24] Y. S. Pawar and N. K. Thakare, pm-lattices,
Algebra Univ.,
7 (1977) 259–263.
[25] T. Tamizh Chelvam and S. Nithya, A note on the zero divisor graph of a lattice,
Trans. Comb.,
3 no. 3 (2014) 51–59.
[26] D. B. West,
Introduction to Graph Theory, 2nd ed., Prentice Hall Upper Saddle River, 2001.
[27] R. J. Wilson,
Introduction to Graph Theory, Fourth edition, Longman, Harlow, 1996.