A NOTE ON 1-FACTORIZABILITY OF QUARTIC SUPERSOLVABLE CAYLEY GRAPHS

MILAD AHANJIDEH AND ALI IRANMANESH

Communicated by Tommy R. Jensen

ABSTRACT. Alspach et al. conjectured that every quartic Cayley graph on an even solvable group is 1-factorizable. In this paper, we verify this conjecture for quartic Cayley graphs on supersolvable groups of even order.

1. Introduction and Preliminary Results

Let G be a finite group with identity 1 and $S \subseteq G \setminus \{1\}$. A Cayley graph with respect to the set S, denoted by $\text{Cay}(G, S)$, is a graph whose vertex set is the set of elements of G with adjacency defined by

$$g \sim h \text{ if and only if } g^{-1}h \in S \cup S^{-1}$$

for every $g, h \in G$, where $S^{-1} = \{s^{-1} \mid s \in S\}$. We see at once that if S generates G, then $\text{Cay}(G, S)$ is connected.

A group G is supersolvable if there exists a normal series

$$\{1\} = H_0 \lhd H_1 \lhd \cdots \lhd H_n = G$$

such that each quotient group H_i/H_{i-1} is cyclic. Note that every supersolvable group is a solvable group.

MSC(2010): Primary: 05C25; Secondary: 05C70.
Keywords: Cayley graph, 1-factorization, supersolvable group.
Received: 04 June 2017, Accepted: 29 May 2018.
*Corresponding author.

DOI: http://dx.doi.org/10.22108/toc.2018.104578.1500
A \textit{j-factor} of a graph is a spanning subgraph which is regular of valence \(j \). In particular, a 1-factor of a graph is a collection of edges such that each vertex is incident with exactly one edge. A 1-factorization of a regular graph is a partition of the edge set of the graph into disjoint 1-factors. A 1-factorization of a regular graph of valence \(v \) is equivalent to a coloring of the edges in \(v \) colors (coloring each 1-factor a different color).

Strong investigated about 1-factorizability of Cayley graphs in 1985 \cite{strong}. After that, Alspach et al. \cite{alspach} studied the factorization of quartic Cayley graphs on some solvable groups of even order. They posed the following conjecture:

\textbf{Conjecture 1.1.} \cite{alspach} \textit{Every quartic Cayley graph on an even solvable group is 1-factorizable.}

They proved their conjecture for an even solvable group \(G \) such that the commutator subgroup \(G' \) is an elementary abelian \(p \)-group. Also Abdollahi showed that every Cayley graph on a nilpotent group of even order is 1-factorizable \cite{abdollahi}.

In this paper, we verify Conjecture 1.1 for an even supersolvable group. In fact we prove the following theorem:

\textbf{Theorem 1.2.} \textit{Every quartic Cayley graph on an even supersolvable group is 1-factorizable}

To prove the above theorem, we need several lemmas.

\textbf{Lemma 1.3.} \cite{strong} \textit{Every cubic Cayley graph on a solvable group is 3-edge-colorable.}

The following lemmas are due to Strong \cite{strong}.

\textbf{Lemma 1.4.} Let \(S_1, S_2 \subseteq G \setminus \{1\}, \) not necessarily generating sets. Suppose \(\text{Cay}(G, S_2) \) is 1-factorizable and \(S_2 \subseteq S_1 \). If every element in \(S_1 \setminus S_2 \) has even order then \(\text{Cay}(G, S_1) \) is 1-factorizable.

\textbf{Lemma 1.5.} If \(G \) is a 2-generated group of even order with a cyclic commutator subgroup, then \(\text{Cay}(G, \{a, a^{-1}, b, b^{-1}\}) \) is 1-factorizable.

\textbf{Lemma 1.6.} Suppose that \(N \) is a normal subgroup of \(G \) and \(S \) is a generating set of \(G \) disjoint from \(N \). Assume that when \(s_i \neq s_j^\pm 1 \), neither \(s_is_j \) nor \(s_is_j^{-1} \) belongs to \(N \). If \(\text{Cay}(G/N, S/N) \) is 1-factorizable, then so is \(\text{Cay}(G, S) \).

2. The proof of Theorem 1.2

The proof falls naturally into three parts. First, assume that all elements of \(S \) have order 2. Since the edges generated by an element of order 2 form a 1-factor, it follows that \(\text{Cay}(G, S) \) is 1-factorizable. If \(S = \{a, a^{-1}, b, c\} \), where \(O(a) > 2 \) and \(O(b) = O(c) = 2 \), then by Lemma 1.3, \(\text{Cay}(G, S \setminus \{c\}) \) is 1-factorizable and hence, Lemma 1.4 completes the proof. Now, assume that \(S = \{a, a^{-1}, b, b^{-1}\} \) where \(O(a), O(b) > 2 \) and let \(N \) be a minimal normal subgroup of \(G \). Suppose that the theorem is false and let \(G \) be the smallest supersolvable group in the question such that \(\text{Cay}(G, S) \) is not 1-factorizable.
1-factorizable. Suppose that \(\langle S \rangle \neq G \). Since \(\langle S \rangle \) is a proper supersolvable subgroup of \(G \), we can see that \(\text{Cay}(\langle S \rangle, S) \) is 1-factorizable by our assumption. Now let \(T = \{x_1, \ldots, x_t\} \), where \(t \in \mathbb{N} \), be a left transversal set of \(\langle S \rangle \) in \(G \). Thus \(\{x_i \text{Cay}(\langle S \rangle, S) : 1 \leq i \leq t \} \) is the set of the connected components of \(\text{Cay}(G, S) \) where for every \(1 \leq i \leq t \), \(x_i \text{Cay}(\langle S \rangle, S) \) is a graph which its vertex set is \(x_i(S) \) and two vertices \(x_iy_j \) and \(x_iy_k \) are adjacent if and only if \((x_iy_j)^{-1}(x_iy_k) \in S \). Therefore for every \(1 \leq i \leq t \), \(x_i \text{Cay}(\langle S \rangle, S) \) and \(\text{Cay}(\langle S \rangle, S) \) are isomorphic and hence \(x_i \text{Cay}(\langle S \rangle, S) \) is 1-factorizable. So \(\text{Cay}(G, S) \) is 1-factorizable which is a contradiction. Thus let \(\langle S \rangle = G \). We continue the proof in two cases:

Case 1. Suppose that \(N \cap S \neq \emptyset \). If \(a, b \in N \), then \(N = G \). Moreover, \(|G| \) is even and \(N \) is a cyclic group of prime order. So, \(N = G = \mathbb{Z}_2 \) and the proof is complete. If \(a \in N \), then \(G/N = \langle bN \rangle \) is abelian and hence, \(G' \leq N \). From this we have \(G' \) is cyclic. Lemma 1.5 shows \(\text{Cay}(G, S) \) is 1-factorizable. This is a contradiction.

Case 2. Let \(N \cap S = \emptyset \). The proof will be divided into two subcases.

Subcase (a). Let \(|N| \) be odd. Since \(|N| \) is odd and \(|G| \) is even, \(|G/N| \) is even. If \(aN \in \{bN, b^{-1}N\} \), then \(G/N = \langle aN, bN \rangle = \langle aN \rangle \). So \(O(aN) = O(bN) \) is even and therefore \(O(a), O(b) \) are even. Thus \(\text{Cay}(G, \{a, a^{-1}\}) \) is an union of cycles of even lengths which is 1-factorizable. Lemma 1.4 shows that \(\text{Cay}(G, S) \) is 1-factorizable. This is impossible. Let \(aN \notin \{bN, b^{-1}N\} \). Since \(|S| = |S/N| \), we conclude that \(\text{Cay}(G/N, S/N) \) is 1-factorizable by our assumption, and so is \(\text{Cay}(G, S) \) from Lemma 1.6, a contradiction.

Subcase (b). Suppose that \(|N| \) is even. So \(|N| = 2 \). If \(|G/N| \) is even, then the same argument as used in Subcase (a) shows that \(\text{Cay}(G, S) \) is 1-factorizable. This is a contradiction. Now, let \(|G/N| = m \) be odd. Since \(|N| = 2 \), \(N \leq Z(G) \), and hence we have \(G = M \times N \), where \(M \) is a Hall subgroup of order \(m \). Note that \(G \) is a supersolvable group, so is \(M \). Thus \(M \) has a minimal normal subgroup \(M_1 \) of prime order \(p \). Since \(G = M \times N \) and \(p \mid m \), we get \(M_1 \) is a minimal normal subgroup of \(G \) of odd order. Hence, by substituting \(N \) with \(M_1 \) in Subcase (a), we see that \(\text{Cay}(G, S) \) is 1-factorizable, which is a contradiction. This completes the proof.

Acknowledgments

The authors wish to thank to referee for reading the paper carefully and making the useful suggestions.

References

DOI: http://dx.doi.org/10.22108/toc.2018.104578.1500
Milad Ahanjideh
Department of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P.O.Box 14115-137, Tehran, Iran
Email: ahanjim@gmail.com

Ali Iranmanesh
Department of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P.O.Box 14115-137, Tehran, Iran
Email: iranmanesh@modares.ac.ir

DOI: http://dx.doi.org/10.22108/toc.2018.104578.1500