ON THE ZERO FORCING NUMBER OF GENERALIZED SIERPIŃSKI GRAPHS

EBRAHIM VATANDOOST*, FATEMEH RAMEZANI AND SAEID ALIKHANI

Communicated by Behruz Tayfeh Rezaie

Abstract. In this article we study the Zero forcing number of Generalized Sierpiński graphs $S(G, t)$. More precisely, we obtain a general lower bound on the Zero forcing number of $S(G, t)$ and we show that this bound is tight. In particular, we consider the cases in which the base graph G is a star, path, a cycle or a complete graph.

1. Introduction

Let $G = (V, E)$ be a non-empty graph of order n, vertex set V and edge set E. For a given graph G and $S \subseteq V(G)$, we denote by $\langle S \rangle$ the subgraph induced by S. For a vertex $v \in V(G)$, the set $N_G(v) = \{u : uv \in E(G)\}$ is the open neighborhood of v, and the degree of a vertex $v \in V(G)$ is $\deg_G(v) = |N_G(v)|$.

The letters of a word u of length t are denoted by $u_1u_2 \ldots u_t$ and the concatenation of two words u and v is denoted by uv. Let V^t be the set of words of size t on alphabet V. In [12], Klavzar and Milutinović introduced the graph $S(K_n, t)$ whose vertex set is V^t, where u is adjacent to v if and only if there exists $1 \leq i \leq t$ such that:

(i) $u_j = v_j$, if $j < i$; (ii) $u_i \neq v_i$; (iii) $u_j = v_i$ and $v_j = u_i$ if $j > i$.

When $n = 3$, those graphs are isomorphic to the Tower of Hanoi graphs. In [13], those graphs have been called Sierpiński graphs. This construction was generalized in [10] for any graph $G = (V, E)$, by defining the generalized Sierpiński graph, $S(G, t)$, as the graph with vertex set V^t and edge set defined

Keywords: Zero forcing number, generalized Sierpiński graph, Sierpiński graph, path covering.
Received: 17 December 2016, Accepted: 19 December 2018.
*Corresponding author.

DOI: http://dx.doi.org/10.22108/toc.2018.101107.1463
These motivated us to consider the zero forcing number of Generalized Sierpiński graphs. For this aim and is denoted by G is a family of induced disjoint paths in the graph that cover (or include) all vertices of the graph. Let each vertex of a graph G be given one of two colors “black” and “white”. Let Z denote the (initial) set of black vertices of G. If the white vertex u_2 is the only white neighbor of a black vertex u_1, then u_1 changes the color of u_2 to black (color-change rule) and we say “u_1 forces u_2” which we denote by $u_1 \rightarrow u_2$. A sequence, $u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_i \rightarrow u_{i+1} \rightarrow \cdots \rightarrow u_t$, obtained through repetitious applications of the color-change rule is called a forcing chain. The set Z is said to be a zero forcing set of G if all vertices of G will be turned black after nitely many applications of the color-change rule. The zero forcing number, $Z(G)$, of G is the minimum cardinality among all zero forcing sets. In [1] it is shown that for any graph G, $M(G) \leq Z(G)$. A path covering of a graph is a family of induced disjoint paths in the graph that cover (or include) all vertices of the graph. The minimum number of such paths that cover the vertices of a graph G is the path cover number of G and is denoted by $P(G)$. Since the forcing chains form a set of covering paths we have $P(G) \leq Z(G)$. These motivated us to consider the zero forcing number of Generalized Sierpiński graphs. For this aim

\[\text{DOI: } \text{http://dx.doi.org/10.22108/toc.2018.101107.1463} \]
we obtain the lower bound for \(Z(S(G, t)) \) for any graph \(G \) and we discuss the tightness of this bound. Also, the zero forcing numbers of Generalized Sierpiński graph of path, cycle, star and complete graph are determined.

![Figure 2. The Sierpiński graph \(S(G, 3) \) for the graph \(G \) of Figure 1.]

2. Preliminaries

First we give some facts that we need in later sections.

Theorem 2.1. \([1][5][17]\) Let \(G \) be a connected graph of order \(n \geq 2 \). Then

i. \(Z(G) = 1 \) if and only if \(G \simeq P_n \).

ii. \(Z(G) = n - 1 \) if and only if \(G \simeq K_n \).

iii. If \(G \) is a tree, then \(Z(G) = P(G) \).

iv. For any integer \(n \geq 2 \), \(Z(K_{1,n}) = n - 1 \).

Theorem 2.2. \([4]\) Let \(G \) be any graph. Then

i. For \(v \in V(G) \), \(Z(G) - 1 \leq Z(G \setminus \{v\}) \leq Z(G) + 1 \).

ii. For \(e \in E(G) \), \(Z(G) - 1 \leq Z(G \setminus \{e\}) \leq Z(G) + 1 \).

Theorem 2.3. \([16]\) For any tree \(T \) and any positive integer \(t \), \(S(T, t) \) is a tree.

3. Main Results

In this section we obtain a lower bound for \(Z(S(G, t)) \) and then we show that this bound is tight.

Theorem 3.1. Let \(G \) be a graph of order \(n \) and size \(m \). Then for any integer \(t \geq 2 \),

\[
Z(S(G, t)) \geq n^{t-1}Z(G) - m \frac{n^{t-1} - 1}{n - 1}.
\]

DOI: http://dx.doi.org/10.22108/toc.2018.101107.1463
Proof. Let \(e^t_{ij} = \{ij \ldots j, ji \ldots i\} \in E(S(G,t)) \) where \(\{i, j\} \in E(G) \). Notice that in this notation \(e^t_{ij} = e^t_{ji} \). Thus

\[
S(G,t) \setminus \{e^t_{ij} : \{i, j\} \in E(G)\} \simeq nS(G, t - 1).
\]

Now, we use Theorem 2.2 to achieve the result. Let \(\{i, j\} \) be an edge in \(G \). Then \(Z(S(G,t)) \geq Z \left(S(G,t) \setminus \{e^t_{ij}\} \right) - 1 \). By using this structure for all \(e^t_{ij} \in E(S(G,t)) \), we have

\[
Z(S(G,t)) \geq nZ(S(G, t - 1)) - |\{e^t_{ij} : \{i, j\} \in E(G)\}| = nZ(S(G, t - 1)) - m.
\]

Again

\[
Z(S(G,t - 1)) \geq nZ(S(G, t - 1)) - |\{e^{t-1}_{ij} : \{i, j\} \in E(G)\}| = nZ(S(G, t - 2)) - m.
\]

Therefore, \(Z(S(G,t)) \geq n^2Z(G, t - 2) - nm - m \). With similar argument we have

\[
Z(S(G,t)) \geq n^{t-1}Z(G) - m\frac{n^{t-1} - 1}{n - 1}.
\]

\(\square \)

In the next Theorem, the zero forcing number of Generalized Sierpiński graph of \(K_n \) is obtained and we will see that the lower bound in Theorem 3.1 is tight.

Theorem 3.2. For any positive integers \(n \) and \(t \),

\[
Z(S(K_n,t)) = \frac{n^t - 2n^{t-1} + n}{2}
\]

Proof. To obtain the upper bound we define the following sets.

For \(t = 2 \), \(Z_2 = \{ij : 1 \leq i \leq n - 1 \text{ and } i \leq j \leq n - 1\} \).

For \(t \geq 3 \), \(Z_t = \{iz : 1 \leq i \leq n \text{ and } z \in Z_{t-1}\} \setminus \{ij \ldots j : 2 \leq i \leq n \text{ and } 1 \leq j < i\} \).

By induction on \(t \geq 2 \) we show that \(Z_t \) is a forcing set of \(S(K_n,t) \). For \(t = 2 \), use the following instructions from \(i = 1 \) to \(i = n - 1 \) to make all vertices black.

\[
i i \rightarrow in
\]

\[
i j \rightarrow ji \text{ for } i + 1 \leq j \leq n,
\]

and at the end, \(n1 \rightarrow nn \). Hence, \(Z_2 \) is a forcing set of \(S(K_n,2) \). Now suppose that for any \(t = k \), \(Z_t \) is a forcing set of \(S(K_n,t) \) and we show that \(Z_{k+1} \) is a forcing set of \(S(K_n, k+1) \). Since \(Z_k \) is a forcing set, all vertices in \(V_1 \) will be forced by \(Z_{k+1} \). Use the following structures from \(i = 1 \) to \(i = n - 1 \).

\[
i n \ldots n \rightarrow ni \ldots i
\]

\[
i j \ldots j \rightarrow ji \text{ for } i + 1 \leq j \leq n,
\]

DOI: http://dx.doi.org/10.22108/toc.2018.101107.1463
and at the end, \(n \cdot n_1 \rightarrow n \ldots n \). So \(Z_{k+1} \) is a forcing set of \(S(K_n, k + 1) \). Therefore, for any \(t \geq 2 \)
\[
Z(S(K_n, t)) \leq |Z_t| = n|Z_{t-1}| - \frac{n(n-1)}{2} \\
= n^2|Z_{t-2}| - \frac{n^2(n-1)}{2} - \frac{n(n-1)}{2} \\
\vdots \\
= n^{t-2}|Z_2| - \frac{n^{t-2}(n-1)}{2} - \ldots - \frac{n^2(n-1)}{2} - \frac{n(n-1)}{2} \\
= \frac{n(n-1)}{2} \left(n^{t-2} - \frac{n^{t-2} - 1}{n-1} \right) \\
= n^t - 2n^{t-1} + n.
\]

Theorems 3.1 and 2.1 complete the proof.

Zero Forcing Number On \(S(C_n, t) \)

Here we will give the similar result for \(Z(S(C_n, t)) \).

Theorem 3.3. For any integers \(n \geq 4 \) and \(t \geq 2 \), \(Z(S(C_n, t)) = \frac{n^t - 2n^{t-2} + n}{n-1} \).

Proof. Let \(t = 2 \). Let \(Z_2 = \{ ii : 1 \leq i \leq n \} \cup \{12, 13\} \). Follow this structure to force all vertices. Notice that the addition is taken modulo \(n \).

\[
11 \rightarrow 1n \rightarrow n1, 13 \rightarrow 14 \rightarrow \ldots \rightarrow 1(n-1) \\
\text{for } 1 \leq i \leq n-1 \\
i(i+1) \rightarrow (i+1)i \rightarrow (i+1)(i+n-1) \rightarrow (i+1)(i+n-2) \rightarrow \ldots \rightarrow (i+1)(i+2)
\]

Hence, \(Z(S(C_n, 2)) \leq |Z_2| = n + 2 \). Now we show that \(Z(S(C_n, 2)) = n + 2 \). Let \(Z \) be a forcing set of minimum cardinality. Since for each \(1 \leq i \leq n \), \(V_i \) has two vertices of degree three, \(|V_i \cap Z| \geq 1 \). We can assume that the starting forcing chain starts in \(V_1 \).

Case I. \(\{12, 1n\} \cap Z \neq \emptyset \). Let \(12 \in Z \). Since \(\text{deg}(12) = 3 \), \(|V_1 \cap Z| = 3 \) or \(|V_1 \cap Z| = 2 \) and \(21 \in Z \).

If \(|V_1 \cap Z| = 3 \), then \(|Z| \geq n + 2 \). Otherwise, since \(\text{deg}(21) = 3 \), \(\{22, 2n\} \cap Z \neq \emptyset \). Thus \(|V_2 \cap Z| \geq 2 \).

Case II. \(\{12, 1n\} \cap Z = \emptyset \). If \(11 \in Z \), then \(|V_1 \cap Z| = 3 \). Otherwise, \(|V_1 \cap Z| = 2 \) and \(\{21, 1n\} \cap Z \neq \emptyset \).

Let \(21 \in Z \). Since \(\text{deg}(21) = 3 \), \(22 \in Z \) or \(2n \in Z \). So \(|V_2 \cap Z| \geq 2 \).

In both cases, \(|Z| \geq n + 2 \), so that \(Z(S(C_n, 2)) = n + 2 \). Therefore, \(Z(S(C_n, 2)) = n + 2 \). For \(t \geq 3 \), let
\[
Z_t = \{ iz : z \in Z_{t-1} \text{ and } 1 \leq i \leq n \} \setminus \{(i(i-1) \cdots (i-1)) : 2 \leq i \leq n\} \cup \{n1 \cdots 1\}.
\]

DOI: http://dx.doi.org/10.22108/toc.2018.101107.1463
By induction, we see that Z_t is a forcing set of $S(C_n, t)$. First suppose that $t = 3$. Since $V_1 \cap Z_3 = \{1z : z \in Z_2\}$, so all vertices in V_1 will be blacked by Z_3. Now for omitted vertices of $\{iz : z \in Z_2, 1 \leq i \leq n\}$, use the following forcing chain:

$$
\begin{align*}
122 & \rightarrow 211 \\
233 & \rightarrow 322 \\
\vdots \\
(n-1)nn & \rightarrow n(n-1)(n-1) \\
1nn & \rightarrow n11
\end{align*}
$$

Hence, Z_3 is a forcing set of $S(C_n, 3)$. Suppose that for any $t \geq k$, Z_t is a forcing set of $S(C_n, t)$. Now we show that this is true for $t = k + 1$. Since, Z_k is a forcing set, all vertices in V_1 will be black. Also $1n \cdots n \rightarrow n1 \cdots 1$. For $2 \leq i \leq n-1$, $(i-1)i \cdots i \rightarrow i(i-1) \cdots (i-1)$ and since, $(V_i) \simeq S(C_n, k)$, all vertices in V_i will be forced by $Z_{k+1} \cap V_i$.

Hence, Z_t is a forcing set for $S(C_n, t)$ for each $t \geq 3$ and so

$$
Z(S(C_n, t)) \leq |Z_t| = n|Z_{t-1}| - n = \cdots = n^{t-2}|Z_2| - \sum_{i=1}^{t-2} n^i = \frac{n^t - 2n^{t-2} + n}{n-1}.
$$

To obtain the lower bound, we use the similar argument as in proof of Theorem 3.1.

$$
Z(S(C_n, t)) \geq n^{t-2}|Z(S(C_n, 2))| - \frac{n(n^{t-2} - 1)}{n-1}
= n^{t-2}(n + 2) - \frac{n(n^{t-2} - 1)}{n-1}
= \frac{n^t - 2n^{t-2} + n}{n-1}.
$$

This completes the proof. \hfill \square

Zero Forcing Number On $S(K_{1,n}, t)$

Let $V(K_{1,n}) = \{0, 1, \ldots, n\}$ where $\deg(0) = n$. Let $S(K_{1,n}, 0) = K_1$. For any positive integer t, we use the notation

$$
S(K_{1,n}, t) \sim S(K_{1,n}, t-1)
$$

when vertex $00 \cdots 00$ of $S(K_{1,n}, t)$ is adjacent to an extreme of V_i in $S(K_{1,n}, t-1)$ for some $1 \leq i \leq n$.

Now let $G_2 : S(K_{1,n}, 1) \sim K_1$ and $G_t : S(K_{1,n}, t-1) \sim G_{t-1}$. With this notations in mind we will prove the following results.

Lemma 3.4. For any positive integer n and $t \geq 2$, $S(K_{1,n}, t) \setminus \{00 \cdots 00\} \simeq nG_t$ and also for $t \geq 3$ we have $G_t \setminus \{i0 \cdots 0\} \simeq (n+1)G_{t-1}$ for some $1 \leq i \leq n$.
Proof. We use induction on \(t \) to reach the result. For \(t = 2 \), we have
\[
S(K_{1,n}, 2) \setminus \{00\} \simeq \bigcup_{i=1}^{n} (V_i \sim K_1)
\]
where \(V_i \simeq S(K_{1,n}, 1) \) for \(1 \leq i \leq n \). Thus \(V_i \sim K_1 \simeq S(K_{1,n}, 1) \sim K_1 \) for any \(1 \leq i \leq n \) and so \(S(K_{1,n}, 2) \setminus \{00\} \simeq nG_2 \). Now, suppose that for any \(k \geq t \),
\[
S(K_{1,n}, k) \setminus \{0 \cdots 0\} \simeq nG_k
\]
and we will prove the result for \(t = k+1 \). For any \(1 \leq i \leq n \) there is the following path in \(S(K_{1,n}, k+1) \):
\[
0 \cdots 0 - 0 \cdots 0i - 0 \cdots 0i0 - 0 \cdots 0i2 - 0 \cdots 0i00 - \cdots - 0i \cdots i0 - 0i \cdots i - i0 \cdots 0.
\]
Hence,
\[
S(K_{1,n}, k+1) \setminus \{0 \cdots 0\} \simeq \bigcup_{i=1}^{n} (V_i \sim V_{0i} \sim V_{00i} \sim \cdots \sim V_{0 \cdots 0i}).
\]
As we know \(V_i \simeq S(K_{1,n}, k), V_{0i} \simeq S(K_{1,n}, k-1) \) and so on. Therefore,
\[
S(K_{1,n}, k+1) \setminus \{0 \cdots 0\} \simeq n(S(K_{1,n}, k) \sim S(K_{1,n}, k-1) \sim \cdots S(K_{1,n}, 1) \sim K_1)
\]
\[
\simeq n(S(K_{1,n}, k) \sim G_k)
\]
\[
\simeq nG_{k+1}.
\]
Since \(N_{G_t}(\{i0 \cdots 0\}) = \{i0 \cdots 0j : 1 \leq j \leq n\} \cup \{i0 \cdots i\} \) for some \(1 \leq i \leq n \),
\[
G_t \setminus \{i0 \cdots 0\} \simeq nG_{t-1} \cup G_{t-1} \simeq (n+1)G_{t-1}.
\]
This completes the proof. \(\square \)

Theorem 3.5. For any positive integers \(n \) and \(t \),
\[
Z(S(K_{1,n}, t)) = (n - 1)(n + 1)^{t-1}.
\]

Proof. First, we use Lemma 3.4 and Theorem 2.2 to obtain the lower bound.
\[
Z(S(K_{1,n}, t)) \geq Z(S(K_{1,n}, t) \setminus \{0 \cdots 0\}) - 1
\]
\[
= nZ(G_t) - 1
\]
\[
\geq n(Z(G_t \setminus \{i0 \cdots 0\}) - 1) - 1
\]
\[
= n(n + 1)Z(G_{t-1}) - (n + 1)
\]
\[
\geq n(n + 1) (Z(G_{t-1} \setminus \{0i0 \cdots 0\}) - 1) - (n + 1)
\]
\[
= n(n + 1)^2Z(G_{t-2}) - (n + 1)^2
\]
\[\vdots\]
\[
\geq n(n + 1)^{t-2}Z(G_2) - (n + 1)^{t-2}
\]

DOI: http://dx.doi.org/10.22108/toc.2018.101107.1463
But $Z(G_2) = Z(S(K_{1,n}, 1) \sim K_1) = Z(K_{1,n} \sim K_1) = Z(K_{1,n+1}) = n$. Hence,

$$Z(S(K_{1,n}, t)) \geq n^2(n+1)^{t-2} - (n+1)^{t-2} = (n+1)^{t-1}(n-1).$$

To obtain the upper bound we define the following sets. For $t = 2$, let

$$Z_2 = \{ij : 1 \leq i, j \leq n\} \setminus \{nn\},$$

for $t = 3$, let

$$Z_3 = \{iz : 0 \leq i \leq n \text{ and } z \in Z_2\} \cup \{inn : 1 \leq i \leq n\} \setminus \{0ii, 0n(n-1) : 1 \leq i \leq n\}$$

and for $t \geq 4$, let

$$Z_t = \{iz : 0 \leq i \leq n \text{ and } z \in Z_{t-1}\} \cup \{i0\cdots n(n-1) : 1 \leq i \leq n\} \setminus \{0\cdots i : 1 \leq i \leq n\}.$$

By induction on $t \geq 2$ we show that Z_t is a forcing set of $S(K_{1,n}, t)$. Let $t = 2$. For any $1 \leq i, j \leq n-1$, $\deg(ij) = 1$ and $ij \in Z_2$. So ij forces $i0$. Since $N(i0) \setminus Z_2 = \{0i\}$, $i0$ forces $0i$ for $1 \leq i \leq n-1$. With following the path

$$i0 \to 00 \to 0n \to n0 \to nn$$

all vertices will be black. Hence, Z_2 is a forcing set of $Z(S(K_{1,n}, 2))$. Let $t = 3$. All vertices in

$\{iz : 0 \leq i \leq n \text{ and } z \in Z_2\} \cup \{inn : 1 \leq i \leq n\}$

force $ij0$ for $1 \leq i, j \leq n$ and $ij0$ forces $i0j$ and as following it forces $i00$. Now, $\{0ii : 1 \leq i \leq n\}$ will be forced by $\{i00 : 1 \leq i \leq n\}$. Since

$\{0ii : 1 \leq i \leq n\} \cup \{0ij : 1 \leq i \leq n-1 \text{ and } 1 \leq j \leq n\}$

are black, $\{0i0 : 1 \leq i \leq n-1\}$ and then $\{00i : 1 \leq i \leq n-1\}$ will be black. Now, by following the path

$$00i \to 000 \to 00n \to n00 \to 0n(n-1)$$

all vertices will get black. We suppose that for $t = k-1$, Z_{k-1} is a forcing set and we will prove it for Z_k. Since Z_{k-1} is a forcing set, $\{iz : 0 \leq i \leq n \text{ and } z \in Z_{k-1}\} \cup \{i0\cdots 0n(n-1) : 1 \leq i \leq n\}$ force all vertices in V_i for $1 \leq i \leq n$. By similar argument as in $t = 3$, we see that the set $\{0i\cdots i : 1 \leq i \leq n\} \cup \{0\cdots 0\text{ }(n(n-1)) \}$ will be forced and so Z_k is a forcing set. Hence,

$$Z(S(K_{1,n}, t)) \leq |Z_t| = (n+1)|Z_{t-1}| = (n+1)^2|Z_{t-2}| = \cdots = (n+1)^{t-2}|Z_2|$$

$$= (n+1)^{t-2}(n^2-1) = (n+1)^{t-1}(n-1).$$

This completes the proof. \square

Zero Forcing Number On $S(P_n, t)$

Let $V = \{1, 2, \ldots, n\}$ be the vertex set of P_n, and $\langle V_{wu} \rangle$ be a copy of P_n in $S(P_n, t)$ for $w \in V^{t-2}$ and $u \in V$. Also we say $\langle V_{wu} \rangle$ and $\langle V_{w'v} \rangle$ are two consecutive paths when $\{x, y\}$ is an edge in $S(P_n, t)$ for $x \in V_{wu}$ and $y \in V_{w'v}$ where $w, w' \in V^{t-2}$ and $u, v \in V$. Also we use $V_{wu} \sim V_{w'v}$ for induced subgraph on $V_{wu} \cup V_{w'v}$. With these notations in mind we will prove the following results.

DOI: http://dx.doi.org/10.22108/toc.2018.101107.1463
Lemma 3.6. Let $t \geq 2$, $w, w' \in V^{t-2}$ and $u, v \in V$. If $\langle w_u \rangle$ and $\langle w_{u'} \rangle$ are two consecutive paths in $S(P_n, t)$, then the path cover number of $V_{wu} \sim V_{w'v}$ is two.

Proof. Since $\langle w_u \rangle$ and $\langle w_{u'} \rangle$ are two consecutive paths, there are $x \in V_{wu}$ and $y \in V_{w'v}$ such that $\{x, y\} \in E(S(P_n, t))$. Hence, $\{u, v\} \in E(P_n)$ and so $u = v + 1$ or $v = u + 1$. Also $\deg(x) = 3$ or $\deg(y) = 3$. Thus $V_{wu} \sim V_{w'v}$ is not a path and by Theorem 2.1, $P(V_{wu} \sim V_{w'v}) \geq 2$. On the other hand, $P(V_{wu} \sim V_{w'v}) \leq P(\langle w_u \rangle) + P(\langle w_{u'} \rangle) = 2$. This completes the proof. □

Theorem 3.7. For any positive integers n and t, $Z(S(P_n, t)) = n^{t-1}$.

Proof. As we know there are n^{t-1} copies of P_n in $S(P_n, t)$ and by Lemma 3.6, the path cover number of each pair of consecutive paths is two. Hence, $P(S(P_n, t)) = n^{t-1}$ and by Theorems 2.1 and 2.3 we have $Z(S(P_n, t)) = n^{t-1}$. □

Question 1. As we see the zero forcing number of $S(K_n, t)$ is equal to lower bound in Theorem 3.1. For which other family of graphs the zero forcing number is exactly the lower bound given in this work?

Question 2. Let G be a universal graph of order n with exactly one vertex of degree $n - 1$. Which is the relation between $Z(S(G, t))$ and $Z(G)$?

A tree is called Starlike if it has exactly one vertex of degree more than two. It is denoted by $S(\ell_1, \ell_2, \ldots, \ell_r)$ such that $S(\ell_1, \ell_2, \ldots, \ell_r) \setminus \{v\} = P_{\ell_1} \cup P_{\ell_2} \cup \cdots \cup P_{\ell_r}$, where v is the vertex of degree more than two. One can see that $Z(S(\ell_1, \ell_2, \ldots, \ell_r)) = r - 1$.

Question 3. What is the zero forcing number of Generalized Sierpiński graph of Starlike?

Acknowledgments

Special thanks are due to the referee who read this paper very carefully and many valuable suggestions.

References

DOI: http://dx.doi.org/10.22108/toc.2018.101107.1463

Ebrahim Vatandoost
Department of Basic Science, Imam Khomeini International University, Qazvin, Iran.
Email: vatandoost@sci.ikiu.ac.ir

Fatemeh Ramezani
Department of Mathematics, Yazd University, P.O.Box 89195-741, Yazd, Iran.
Email: f.ramezani@yazd.ac.ir

Saeid Alikhani
Department of Mathematics, Yazd University, P.O.Box 89195-741, Yazd, Iran.
Email: alikhani@yazd.ac.ir

DOI: http://dx.doi.org/10.22108/toc.2018.101107.1463