VISUAL CRYPTOGRAPHY SCHEME ON GRAPHS WITH $m^*(G) = 4$

MAHMOOD DAVARZANI

Communicated by Hamidreza Maimani

Abstract. Let $G = (V, E)$ be a connected graph and $\Gamma(G)$ be the strong access structure where obtained from graph G. A visual cryptography scheme (VCS) for a set P of participants is a method to encode a secret image such that any pixel of this image change to m subpixels and only qualified sets can recover the secret image by stacking their shares. The value of m is called the pixel expansion and the minimum value of the pixel expansion of a VCS for $\Gamma(G)$ is denoted by $m^*(G)$. In this paper we obtain a characterization of all connected graphs G with $m^*(G) = 4$ and $\omega(G) = 5$ which $\omega(G)$ is the clique number of graph G.

1. Introduction

A secret sharing scheme is a method to share a secret among a set of participants such that only qualified subsets can reconstruct the secret from their shares, in addition non-qualified subsets can not obtain any information about the secret.

Visual cryptography scheme, (VCS), is a kind of secret sharing scheme, was introduced by Naor and Shamir [9]. They investigate the case of $((k, n) - VCS)$ where $2 \leq k \leq n$, in which the secret image is visible if and only if k or more participants stack their shares, whereas any set of less than k participants have no information on the secret image. In a VCS, decoder is human visual system and participants in a qualified set can see secret image without knowledge of cryptographic. Ateniese et al. [3, 4] extended this scheme to general access structures. In this model, P is set of participants and $\Gamma = (Q, F)$ is access structure such that $Q \subseteq 2^P$ is the collection of qualified sets and $F \subseteq 2^P$ is the
collection of forbidden sets. We assume that image secret is collection of black and white pixels. Now in a VCS any pixel of this image is replaced by \(m \) subpixels and give to each shares. The number of \(m \) is called the pixel expansion and for a given general access structure \(\Gamma \), the minimum value of \(m \) is denoted by \(m^*(\Gamma) \), and is called the optimal pixel expansion.

If the vertex set \(V \) in a graph \(G = (V, E) \) be the set of participants and any element of \(\Gamma \) be the subset of \(V \) which contains at least one edge, then this access structure is denoted by \(\Gamma(G) \) and the optimal expansion is denoted by \(m^*(G) \). Atenies et al. in [3, 4] studied the construction of VCSs that obtained from graphs and proved that \(m^*(\Gamma) = 2 \) if and only if \(\Gamma = \Gamma(G) \) where \(G \) is a complete bipartite graph. They have also proved that \(m^*(K_n) \) is the smallest \(m \) which \(n \leq \left(\frac{m}{2} \right) \). So \(m^*(K_2) = 2 \) and \(m^*(K_3) = 3 \). In addition they proved that \(m^*(H) \leq m^*(G) \) where \(H \) is induced subgraph \(G \). Since \(m^*(K_6) = 4 \) and \(m^*(K_7) = 5 \) thus if \(m^*(G) = 4 \) and \(H \) be the induced subgraph \(G \) then the biggest induced complete subgraph \(G \) is \(K_6 \).

Arumugam et al. in [1, 2] obtained a characterization of all connected graphs \(G \) for which \(m^*(G) = 2 \) and \(3 \). In this paper, we study the graphs with \(m^*(G) = 4 \). We give a characterization of all connected graphs \(G \) which \(m^*(G) = 4 \) and \(\omega(G) = 5 \) that \(\omega(G) \) is the clique number of graph \(G \).

2. Preliminaries

Let \(P = \{1, 2, \ldots, n\} \) be a set of participants and let \(2^P \) denote the set of all subsets of \(P \). If \(Q \subseteq 2^P \) and \(F \subseteq 2^P \) such that \(Q \cap F = \emptyset \), then the pair \(\Gamma = (Q, F) \) is called an access structure on \(P \). We refer elements of \(Q \) as qualified sets and to elements of \(F \) as forbidden sets. We say \(\Gamma \) is strong access structure whenever \(Q \) is monotone increasing and \(F \) is monotone decreasing and \(Q \cup F = 2^P \). Throughout this paper we consider only strong access structures. Define \(\Gamma_0 \) to consist of all the minimal qualify sets : \(\Gamma_0 = \{ A \in Q : A' \notin Q \text{ for all } A' \subseteq A \} \).

Let \(S \) be an \(n \times m \) boolean matrix. If \(X \subseteq P = \{1, 2, \ldots, n\} \) then \(S[X] \) denotes the \(|X| \times m \) matrix obtained from \(S \) by considering its restriction to rows corresponding to the elements in \(X \), further \(S_X \) denotes the vector obtained by applying the boolean OR operation to the rows of \(S[X] \) and \(w(S_X) \) is Hamming weight of \(S_X \).

Definition 2.1. [3] Let \(\Gamma = (Q, F) \) be a strong access access structure on a set of \(n \) participants. Two \(n \times m \) boolean matrices \(S^0 \) and \(S^1 \) construct a VCS if there exist a positive real number \(\alpha \) and the set \(\{t_X | X \in Q\} \) satisfying the following conditions:

1. Any qualified set \(X = \{i_1, i_2, \ldots, i_q\} \in Q \) can recover the shared image by stacking their transparencies. Formally \(w(S^0_X) \leq t_X - \alpha m \), whereas \(w(S^1_X) \geq t_X \).
2. Any forbidden set \(X = \{i_1, i_2, \ldots, i_q\} \in F \) has no information on the shared image. Formally the two \(q \times m \) matrices \(S^0[X] \) and \(S^1[X] \) are equal up to a column permutation.

The first property is attributed to the contrast of the image and the second property is related to security. We assume that the message consist of a collection of black and white pixels. Let \(\pi \) be a random permutation of \(\{1, 2, \ldots, m\} \). Now a VCS is used to encrypt an image as follows. If a pixel
in the secret image is white (resp. black), then \(\pi \) is applied to the columns of \(S^0 \) (resp. \(S^1 \)) and row \(i \) of the permuted matrix is the share of \(i \)th participant. Therefore each share is a collection of \(m \) black and white subpixels. The value of \(m \) is called the pixel expansion and the value of \(\alpha \) is called relative contrast that measure clarity of reconstructed image.

One problem in a VCS is to minimize the pixel expansion and maximize the relative contrast. Several results on these two concepts can be found in \([10, 11]\). The minimum value of the pixel expansion \(m \) of a VCS for \(\Gamma = (Q, F) \) is denoted by \(m^*(\Gamma) \).

Definition 2.2. Let \(\Gamma = (Q, F) \) be an access structure on a set \(P \) of participants. Then \(\Gamma' = (Q', F') \) is the induced access structure on \(P' \subseteq P \) that \(Q' = Q \cap 2^P' \) and \(F' = F \cap 2^P' \).

Let \(G = (V, E) \) be a graph, then we can define a VCS on \(G \) such that a subset \(X \) of \(V \) is qualified if and only if the induced subgraph \(G[X] \) contains at least one edge of \(G \). The access structure based on graph \(G \) is denoted by \(\Gamma(G) \) and \(m^*(G) \) is the minimum value of pixel expansion \(m \) a VCS that \(\Gamma(G) \) is the access structures.

Theorem 2.3. \([3]\) Let \(\Gamma = (Q, F) \) be an access structure on a set \(P \) of participants and let \(\Gamma' = (Q|P', F|P') \) be the induced access structure on the subset of participants \(P' \). Then \(m^*(\Gamma') \leq m(\Gamma) \).

Remark 2.4. If \(H = (V', E') \) be an induced subgraph of \(G = (V, E) \), then \(\Gamma(H) \) is an induced access structure of \(\Gamma(G) \) and by Theorem 2.3, \(m^*(H) \leq m^*(G) \).

Ateniese et al. \([3, 4]\) studied the construction of VCSs on general access structures and graph access structures. They showed in \([3]\) that how can obtain basis matrices \(S^0 \) and \(S^1 \) of a VCS on a complete graph.

Theorem 2.5. \([3]\) Let \(\Gamma = (Q, F) \) be an access structure on a set \(P \) of participants. Let \(X, Y \subseteq P \) be two nonempty subsets of participants such that \(X \cap Y = \emptyset \), \(X \in F \) and \(X \cup Y \in Q \). Then in any \((\Gamma, m)\) - VCS for this access structure, we have \(w(S^1_{X \cup Y}) - w(S^0_Y) \geq \alpha \cdot m \) where \(S^0 \) and \(S^1 \) are basis matrices, \(m \) is the pixel expansion and \(\alpha \) is the relative contrast.

Remark 2.6. \([2]\) By Theorem 2.5, if \(Y = \{y\} \), then \(S^1[X \cup \{y\}] \) has at least one column with 1 in the row corresponding to \(y \) and with zero in all other entries. such a column in \(S^1[X \cup \{y\}] \) is called an unavoidable pattern.

For complete graph \(K_n \) and complete bipartite graph, we have the following theorems.

Theorem 2.7. \([3]\) Let \(G = K_n \) be complete graph. Then the value \(m^*(K_n) \) is the smallest integer \(m \) such that \(n \leq \binom{m}{\frac{m}{2}} \).

Theorem 2.8. \([3]\) Let \(\Gamma \) be a strong access structure on a set of participants \(P \). Then \(m^*(\Gamma) = 2 \) if and only if \(\Gamma = \Gamma(G) \) where \(G \) is a complete bipartite graph with \(V(G) = P \).

An clique, \(C \), in a graph \(G = (V, E) \) is a subset of the vertices such that every two distinct vertices are adjacent. This is equivalent to the condition that the induced subgraph \(G[C] \) is complete. A maximum clique of a graph \(G \) is a clique such that there is no clique with more vertices. The clique
number \(\omega(G) \) of a graph \(G \) is the number of vertices in a maximum clique in \(G \). An independent set, \(I \), in a graph is a subset of vertices such that no two vertices in \(I \) are adjacent. A maximal independent set is an independent set containing the largest possible number of vertices in graph. The following theorem gives a relation between \(m^*(G) \) and number of maximal independent sets in \(G \) that proved by Dehkordi and Cheraghi in [7].

Theorem 2.9. [7] Let \(G \) be a graph with the number of maximal independent sets \(l \), then \(m^*(G) \geq t \) where \(t \) is the smallest integer such that \(l \leq \left(\frac{t}{\lfloor \frac{1}{4} \rfloor} \right) \).

3. Main results

Let \(G = (V, E) \) be a connected graph with \(m^*(G) = 4 \). Then by Remark 2.4 for any induced subgraph \(H \) of \(G \) having no isolated vertices, we have \(m^*(H) \leq 4 \). We have from Theorem 2.9 that the number of maximal independent sets in \(H \) is at most 6. Further by Theorem 2.7, we have \(\omega(G) \leq 6 \). In [6] we characterized all of graphs which \(m^*(G) = 4 \) and \(\omega(G) = 6 \). In this paper, we consider case of \(\omega(G) = 5 \). If \(\omega(G) = 5 \), then \(K_5 \) is induced subgraph of graph \(G \). We first prove the following lemma.

Proposition 3.1. Let \(G = K_5 \) be a complete graph and \(V = \{ v_1, v_2, \ldots, v_5 \} \) is vertices set. Then one of the pairs of base matrices a VCS for \(\Gamma(G) \) is

\[
S^1[V] \sim \begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{bmatrix}, \quad S^0[V] \sim \begin{bmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{bmatrix}.
\]

Proof. By Theorem 2.7, \(m^*(K_5) = 4 \). From Theorem 6.6 and corollary 6.7 in [3], a \((\Gamma(K_5), 4) \)-VCS implies the existence of a sperner family of size 5 over a ground set of size 4. Let ground set is \(P = \{ a_1, a_2, a_3, a_4 \} \), now only sperner family of size 5 over \(P \) is \(B_1 = \{ a_1, a_2 \} \), \(B_2 = \{ a_2, a_3 \} \), \(B_3 = \{ a_3, a_4 \} \), \(B_4 = \{ a_1, a_4 \} \), \(B_5 = \{ a_1, a_3 \} \). From Theorem 7.2 in [3], we obtain basis matrices for a VCS with strong access structure \(\Gamma(K_5) \) from following definitions.

\[
S^1(i, j) = \begin{cases}
1 & a_j \in B_i \\
0 & a_j \notin B_i
\end{cases}, \quad S^0(i, j) = \begin{cases}
1 & 1 \leq j \leq |B_i| \\
0 & |B_i| + 1 \leq j \leq 4
\end{cases}.
\]

Hence \(S^1[V] \sim \begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{bmatrix} \) and \(S^0[V] \sim \begin{bmatrix}
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{bmatrix} \). \(\square \)

Lemma 3.2. Let \(G \) be a connected graph with \(m^*(G) = 4 \). If \(\omega(G) = 5 \) where \(\omega(G) \) is the clique number of graph \(G \), then \(G \) is \((K_5 \cup K_1) \)-free.

Proof. Assume that \(G \) is not \((K_5 \cup K_1) \)-free, thus \(G \) contains \(K_5 \cup K_1 \) as an induced subgraph. So if \(Z = V(K_5) = \{ v_1, \ldots, v_5 \} \) and \(V(K_1) = \{ x \} \), then the vertex \(x \) is not connected to any of the
vertices of the Z. Given that $G[Z] = K_5$ and by using Proposition 3.1, we have $S^1[Z] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$.

Without loss of generality assume that the rows of $S^1[Z]$ corresponds to v_1, v_2, \ldots, v_5 respectively. Using Remark 2.6 with $X = \{x, v_2\}$ and $Y = \{v_1\}$, which $X \in F$ and $X \cup Y \in Q$, then $S^1[X \cup Y]$ has at least one column with 1 in the row corresponding to v_1 and with zero in all other entries. Therefore, the row corresponding to x in $S^1[Z \cup \{x\}]$ must be $[0 \ ? \ ? \ ?]$ where ? represents the presence of either 0 or 1. So the first entry is zero and the following table shows that other entries of the row corresponding to x are also zero.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>row of x in $S^1[Z \cup {x}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, v_2</td>
<td>v_1</td>
<td>$[0 \ ? \ ? \ ?]$</td>
</tr>
<tr>
<td>x, v_3</td>
<td>v_2</td>
<td>$[0 \ 0 \ ? \ ?]$</td>
</tr>
<tr>
<td>x, v_4</td>
<td>v_3</td>
<td>$[0 \ 0 \ 0 \ ?]$</td>
</tr>
<tr>
<td>x, v_5</td>
<td>v_4</td>
<td>$[0 \ 0 \ 0 \ 0]$</td>
</tr>
</tbody>
</table>

Thus $S^1[Z \cup \{x\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$. This gives a contradiction since no row of S^1 can have weight zero.

Hence G is $(K_5 \cup K_1)$-free. □

Since graph G is $(K_5 \cup K_1)$-free, then for any vertex of $x \in G$, we have $N(x) \cap Z \neq \emptyset$, where $N(x)$ is the open neighborhood of x consisting of all vertices which are adjacent to x. Also, since $\omega(G) = 5$, it follows that $1 \leq |N(x) \cap Z| \leq 4$. For any nonempty proper subset $X \subseteq \{1, 2, \ldots, 5\}$, we define the set V_X as follows:

$$V_X := \{x \in V \setminus Z, N(x) \cap Z = \{v_i : i \in X\}\}$$

We now determine the properties of above sets in following lemmas.

Lemma 3.3. Let G be a connected graph with $m^*(G) = 4$ and $\omega(G) = 5$. Then with above definition, we have

(i) If $|X| = 1$, then $V_X = \emptyset$,

(ii) If $|X| = 2$, then $V_X = \emptyset$ except probably V_{14} and V_{23},

(iii) If $|X| = 3$, then $V_X = \emptyset$ except probably V_{125} and V_{345},

(iv) If $|X| = 4$, then V_X can be available.

Proof. Let $G[Z] = K_5$ and $Z = \{v_1, v_2, \ldots, v_5\}$. By Lemma 3.1, $S^1[Z \cup \{x\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$. Without loss of generality we assume that rows of $S^1[Z]$ corresponds to v_1, v_2, \ldots, v_5 respectively.

(i) Suppose $V_1 \neq \emptyset$ and let $x \in V_1$. Using Remark 2.6, we have the following table:

http://dx.doi.org/10.22108/toc.2019.113671.1599
Therefore row of x in $S^1[Z \cup \{x\}]$ is $[0 \ 0 \ 0 \ 0]$. This gives a contradiction, hence $V_1 = \emptyset$. A similar proof shows that other V_i's are empty.

(ii). According to $S^1[Z]$, v_2 and v_3 are zero in first column and other entries in this column are nonzero, so $V_{23} \neq \emptyset$ and if $x \in V_{23}$ then we have

$$S^1[Z \cup \{x\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \quad S^0[Z \cup \{x\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

Similarly if $y \in V_{14}$ then we have

$$S^1[Z \cup \{y\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \quad S^0[Z \cup \{y\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

The other V_{ij}'s are empty. For example let $x \in V_{12}$, then by Remark 2.6, we have the following table:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>row of x in $S^1[Z \cup {x}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, v_2</td>
<td>v_1</td>
<td>$\begin{bmatrix} 0 & ? & ? & ? \end{bmatrix}$</td>
</tr>
<tr>
<td>x, v_3</td>
<td>v_2</td>
<td>$\begin{bmatrix} 0 & 0 & ? & ? \end{bmatrix}$</td>
</tr>
<tr>
<td>x, v_4</td>
<td>v_3</td>
<td>$\begin{bmatrix} 0 & 0 & 0 & ? \end{bmatrix}$</td>
</tr>
<tr>
<td>x, v_5</td>
<td>v_4</td>
<td>$\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$</td>
</tr>
</tbody>
</table>

Therefore row of x in $S^1[Z \cup \{x\}]$ is $[0 \ 0 \ 0 \ 0]$. This gives a contradiction, hence $V_{12} = \emptyset$. A similar proof shows that other V_{ij}'s are empty.

(iii). In $S^1[Z]$, v_1, v_2 and v_5 are zero in last column and other entries in this column are nonzero, so $V_{125} \neq \emptyset$. If $x \in V_{125}$, then we have

$$S^1[Z \cup \{x\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad S^0[Z \cup \{x\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

Similarly if $y \in V_{345}$, then we have

$$S^1[Z \cup \{y\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad S^0[Z \cup \{y\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

By the (ii), graph G can contains V_{14} and V_{23}. From each one, we can make three V_{ijk}, where $1 \leq i,j,k \leq 5$ and i,j,k are different as follows:

http://dx.doi.org/10.22108/toc.2019.113671.1599
<table>
<thead>
<tr>
<th>V_{ij}</th>
<th>V_{23}</th>
<th>V_{14}</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{123}</td>
<td>V_{124}</td>
<td></td>
</tr>
<tr>
<td>V_{123}</td>
<td>V_{234}</td>
<td>V_{134}</td>
</tr>
<tr>
<td>V_{123}</td>
<td>V_{234}</td>
<td>V_{134}</td>
</tr>
</tbody>
</table>

All of V_{ijk}’s in above table are \emptyset. Let V_{123} that is obtained from V_{23} is not empty and let $x \in V_{123}$. Then by (ii) row of x in $S^1[Z \cup \{x\}]$ is $[1 \; 0 \; 0 \; 0]$. However $\{x, v_1\} \in F$, Thus in $S^1[Z \cup \{x\}]$ we must have the unavoidable patterns of $[0\;\text{ and }\;1\;\text{ while the first pattern doesn’t exist. Hence }$ $V_{123} = \emptyset$. Similarly all of V_{ijk}’s in above table are empty. Now, it is sufficient that we show V_{135} and V_{245} are empty. Let V_{135} and V_{245} are not empty and $x \in V_{245}, y \in V_{135}$. Using Remark 2.6, we have the following tables:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>row of x in $S^1[Z \cup {x}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, v_3</td>
<td>v_4</td>
<td>$[0 ; ? ; ? ; ?]$</td>
</tr>
<tr>
<td>x, v_3</td>
<td>v_2</td>
<td>$[0 ; 0 ; ? ; ?]$</td>
</tr>
<tr>
<td>x, v_1</td>
<td>v_2</td>
<td>$[0 ; 0 ; 0 ; ?]$</td>
</tr>
<tr>
<td>x, v_1</td>
<td>v_4</td>
<td>$[0 ; 0 ; 0 ; 0]$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>row of y in $S^1[Z \cup {y}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>y, v_2</td>
<td>v_1</td>
<td>$[0 ; ? ; ? ; ?]$</td>
</tr>
<tr>
<td>y, v_4</td>
<td>v_1</td>
<td>$[0 ; 0 ; ? ; ?]$</td>
</tr>
<tr>
<td>y, v_4</td>
<td>v_5</td>
<td>$[0 ; 0 ; 0 ; ?]$</td>
</tr>
<tr>
<td>y, v_2</td>
<td>v_3</td>
<td>$[0 ; 0 ; 0 ; 0]$</td>
</tr>
</tbody>
</table>

Therefore rows of x and y in $S^1[Z \cup \{x, y\}]$ are $[0 \; 0 \; 0 \; 0]$. This gives a contradiction, hence V_{245} and V_{135} are empty.

(iv). Let $x \in V_{1234}$. By Remark 2.6, we have the following table:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>row of x in $S^1[Z \cup {x}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, v_5</td>
<td>v_1</td>
<td>$[? ; 0 ; ? ; ?]$</td>
</tr>
<tr>
<td>x, v_5</td>
<td>v_3</td>
<td>$[? ; 0 ; ? ; 0]$</td>
</tr>
<tr>
<td>v_2</td>
<td>x</td>
<td>$[1 ; 0 ; ? ; 0]$</td>
</tr>
<tr>
<td>v_4</td>
<td>x</td>
<td>$[1 ; 0 ; 1 ; 0]$</td>
</tr>
</tbody>
</table>

Hence $S^1[Z \cup \{x\}] \sim \begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0
\end{bmatrix}$. Also, since $\{x, v_5\}$ is forbidden set and $w(S^1_{\{x\}}) = 2$, then $S^0[Z \cup \{x\}] \sim \begin{bmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{bmatrix}$. Let $y \in V_{1235}$. By Remark 2.6, we have the following table:
<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>row of y in $S^1[Z \cup {y}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>y, v_4</td>
<td>v_1</td>
<td>$[? \ 0 \ ? \ ?]$</td>
</tr>
<tr>
<td>y, v_4</td>
<td>v_3</td>
<td>$[? \ 0 \ 0 \ ?]$</td>
</tr>
<tr>
<td>v_3</td>
<td>y</td>
<td>$[1 \ 0 \ 0 \ ?]$</td>
</tr>
<tr>
<td>v_5</td>
<td>y</td>
<td>$[1 \ 0 \ 0 \ 1]$</td>
</tr>
</tbody>
</table>

Hence $S^1[Z \cup \{y\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$.

Also, since $\{y, v_4\}$ is forbidden set and $w(S^1_{\{y\}}) = 2$, then $S^0[Z \cup \{y\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$. Let $z \in V_{1245}$. By Remark 2.6, we have the following table:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>row of z in $S^1[Z \cup {z}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>z, v_3</td>
<td>v_4</td>
<td>$[0 \ ? \ ? \ ?]$</td>
</tr>
<tr>
<td>z, v_3</td>
<td>v_2</td>
<td>$[0 \ 0 \ ? \ ?]$</td>
</tr>
<tr>
<td>v_2</td>
<td>z</td>
<td>$[0 \ 0 \ ? \ 1]$</td>
</tr>
<tr>
<td>v_4</td>
<td>z</td>
<td>$[0 \ 0 \ 1 \ 1]$</td>
</tr>
</tbody>
</table>

Hence $S^1[Z \cup \{z\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$.

Also, since $\{z, v_3\}$ is forbidden set and $w(S^1_{\{z\}}) = 2$, then $S^0[Z \cup \{z\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$. Let $s \in V_{1345}$. By Remark 2.6, we have the following table:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>row of s in $S^1[Z \cup {s}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s, v_2</td>
<td>v_1</td>
<td>$[0 \ ? \ ? \ ?]$</td>
</tr>
<tr>
<td>s, v_2</td>
<td>v_3</td>
<td>$[0 \ ? \ ? \ 0]$</td>
</tr>
<tr>
<td>v_3</td>
<td>s</td>
<td>$[0 \ 1 \ ? \ 0]$</td>
</tr>
<tr>
<td>v_1</td>
<td>s</td>
<td>$[0 \ 1 \ 1 \ 0]$</td>
</tr>
</tbody>
</table>

Hence $S^1[Z \cup \{s\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$.

Also, since $\{s, v_2\}$ is forbidden set and $w(S^1_{\{s\}}) = 2$, then $S^0[Z \cup \{s\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$. Let $t \in V_{2345}$. By Remark 2.6, we have the following table:
Lemma 3.4. Let G be a connected graph with $m^*(G) = 4$ and $\omega(G) = 5$. Also, suppose that $Z = \{v_1, v_2, \ldots, v_5\}$ is a clique of G. Then V_X is an independent set for any $X \subseteq \{1, 2, \ldots, 5\}$ with $2 \leq |X| \leq 4$.

Proof. Let $|X| = 2$. Then by Lemma 3.3, we consider the cases $X = \{1, 4\}$ and $X = \{2, 3\}$. Let $x, y \in V_{14}$. If $\{x, y\} \in Q$, then we have 8 maximal independent sets as follows: $\{x, v_2\}$, $\{x, v_3\}$, $\{x, v_5\}$, $\{y, v_2\}$, $\{y, v_3\}$, $\{y, v_5\}$, $\{v_1\}$, $\{v_4\}$. By Thorem 2.9, G has at most 6 maximal independent sets, thus this gives a contradiction. Hence V_{14} is an independent set. Similarly, the set of V_{23} is independent. Now let $x, y \in V_{125}$. If $\{x, y\} \in Q$, then we have 7 maximal independent sets as follows: $\{x, v_3\}$, $\{x, v_4\}$, $\{y, v_3\}$, $\{y, v_4\}$, $\{v_1\}$, $\{v_2\}$, $\{v_5\}$ and $\{v_3\}$. By Theorem 2.9, this gives a contradiction, hence V_{125} is an independent set. Similarly, the set of V_{345} is independent.

Now we show that $V_{1234} = \emptyset$. If $V_{1234} \neq \emptyset$, let $x, y \in V_{1234}$. Then by Lemma 3.3, we have

$$S^1[Z \cup \{x, y\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}, \quad S^0[Z \cup \{x, y\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}.$$

So $w(S^1_{\{x,y\}}) = w(S^0_{\{x,y\}}) = 2$, thus $\{x, y\} \in F$. Hence V_{1234} is a independent set and this complete proof. \(\square\)

Lemma 3.5. Let G be a connected graph with $m^*(G) = 4$ and $\omega(G) = 5$. Then $V_{14} \cup V_{23}$ is an independent set.

Proof. From lemma 3.3, we have

$$S^1[Z \cup \{x, y\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}, \quad S^0[Z \cup \{x, y\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}.$$

http://dx.doi.org/10.22108/toc.2019.113671.1599
If $S^0[Z \cup \{x,y\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ then $w(S^1_{\{x,y\}}) > w(S^0_{\{x,y\}})$, thus $\{x,y\} \in Q$. However $w(S^1_{\{x,y,v_5\}}) = w(S^0_{\{x,y,v_5\}})$, which is contradiction since $\Gamma(G)$ is strong access structure. Hence $S^0[Z \cup \{x,y\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$. In this case $w(S^1_{\{x,y\}}) = w(S^0_{\{x,y\}})$ and this show that $\{x,y\} \in F$. Hence x and y are nonadjacent. Thus $V_{14} \cup V_{23}$ is an independent set.

\[\square\]

Remark 3.6. Suppose that $V_{125}, V_{345} \neq \emptyset$. Let $x \in V_{125}$, $y \in V_{345}$. From Lemma 3.3, we have

$$S^1[Z \cup \{x,y\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}, S^0[Z \cup \{x,y\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \text{ or } \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

In first form of $S^0[Z \cup \{x,y\}]$, we have $w(S^1_{\{x,y\}}) > w(S^0_{\{x,y\}})$, hence $\{x,y\}$ is qualified set and this show that x and y are adjacent. In second form of $S^0[Z \cup \{x,y\}]$, we have $w(S^1_{\{x,y\}}) = w(S^0_{\{x,y\}})$, hence $\{x,y\}$ is forbidden set, thus x and y are nonadjacent.

Lemma 3.7. Let G be a connected graph with $\mu^*(G) = 4$ and $\omega(G) = 5$. Also, X, Y and W be nonempty proper subsets of $\{1,2,\ldots,5\}$. If $|X| = 2$, $|Y| = 3$ and $|W| = 4$, then with previous definitions,

(i) The sets of $V_X \cup V_Y$ are independent sets,

(ii) The sets of $V_X \cup V_W$ are independent sets,

(iii) The induced subgraphs $G[V_Y \cup V_W]$ are complete bipartite graphs.

Proof. (i). Let $V_{14}, V_{125} \neq \emptyset$. If $x \in V_{14}$ and $y \in V_{125}$, then by Lemma 3.3, we have

$$S^1[Z \cup \{x,y\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}, S^0[Z \cup \{x,y\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \text{ or } \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}.$$

Hence $w(S^1_{\{x,y\}}) > w(S^0_{\{x,y\}})$, thus $\{x,y\} \in Q$. However $w(S^1_{\{x,y,v_1\}}) = w(S^0_{\{x,y,v_1\}})$, which is contradiction since $\Gamma(G)$ is strong access structure. So $\{x,y\} \in F$ and hence $V_{14} \cup V_{125}$ is independent set. A similar proof shows that $V_{14} \cup V_{345}, V_{23} \cup V_{125}$ and $V_{23} \cup V_{345}$ are independent sets.

(ii). Let $V_{14}, V_{1234} \neq \emptyset$. If $x \in V_{14}$ and $y \in V_{1234}$, then by Lemma 3.3, we have

$$S^1[Z \cup \{x,y\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}, S^0[Z \cup \{x,y\}] \sim \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \text{ or } \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}.$$

Hence $w(S^1_{\{x,y\}}) = w(S^0_{\{x,y\}})$, thus $\{x,y\} \in F$. A similar proof shows that $V_X \cup V_W$ is an independent set.
(iii). Let \(V_{125}, V_{1234} \neq \emptyset \). If \(x \in V_{125} \) and \(y \in V_{1234} \), then by Lemma 3.3, we have

\[
S^1[Z \cup \{x, y\}] \sim \begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix}, \quad S^0[Z \cup \{x, y\}] \sim \begin{bmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0
\end{bmatrix}.
\]

Hence \(w(S^1_{\{x,y\}}) > w(S^0_{\{x,y\}}) \), thus \(\{x, y\} \in Q \). A similar proof shows that the induced subgraph \(G[Y \cup W] \) is a complete bipartite graph. \(\square \)

Lemma 3.8. Let \(G \) be a connected graph with \(m^*(G) = 4 \) and \(\omega(G) = 5 \). If \(V_{ij} \)'s are not empty, then \(V_{ijk} \)'s are empty.

Proof. Let \(V_{ij} \)'s are not empty and \(x \in V_{23} \) and \(y \in V_{14} \). If \(V_{125} \neq \emptyset \), then by Lemma 3.3 we have

\[
S^1[Z \cup \{x, y, z\}] \sim \begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix}, \quad S^0[Z \cup \{x, y, z\}] \sim \begin{bmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{bmatrix}.
\]

Hence \(w(S^1_{\{x,y,z\}}) > w(S^0_{\{x,y,z\}}) \), therefore \(\{x, y\} \in Q \) and this is contradiction with Lemma 3.5. \(\square \)

We now proceed to characterize connected graphs \(G \) such that \(m^*(G) = 4 \) and \(\omega(G) = 5 \).

Let \(F \) be the family of graphs that obtained from complete graph \(K_5 \) with \(V(K_5) = \{v_1, v_2, \ldots, v_5\} \) by adding nine independent sets \(V_{14}, V_{23}, V_{125}, V_{345}, V_{1234}, V_{1235}, V_{1245}, V_{1345}, V_{2345} \) and \(V_{2345} \) where \(|V_{14}| = n_1, |V_{23}| = n_2, |V_{125}| = n_3, |V_{345}| = n_4, |V_{1234}| = n_5, |V_{1235}| = n_6, |V_{1245}| = n_7, |V_{1345}| = n_8, |V_{2345}| = n_9 \) and these sets satisfy in Lemma 3.4 to Lemma 3.8. According to the definition of \(V_{1234} \), if \(x \in V_{1234} \), then \(\{x, v_5\} \) is independent, so we can replace set of \(v_5 \) with a set of independent vertices, with the name \(V'_5 \) instead of set \(V_{1234} \). Similarly, the vertices \(v_1, v_2, v_3 \) and \(v_4 \) can replace by independent sets \(V'_1, V'_2, V'_3 \) and \(V'_4 \). A few graphs in the family \(F \) are given in Figure 1.

![Figure 1. Graphs in family F](http://dx.doi.org/10.22108/toc.2019.113671.1599)
Theorem 3.9. Let G be a connected graph with $\omega(G) = 5$. Then $m^*(G) = 4$ if and only if for specified values n_1, n_2, \ldots, n_9, G is isomorphic to a graph H in F.

Proof. Let $G = (V, E)$ be a connected graph containing the complete graph $V(K_5) = \{v_1, v_2, \ldots, v_5\}$ and $m^*(G) = 4$. Let $Z = \{v_1, v_2, \ldots, v_5\}$. It follows from Lemma 3.2 that every vertex $u \in V - Z$ is adjacent to at least one vertex in Z. Further since G is K_6 free, u is adjacent to at most four vertices in Z. Therefore by Lemma 3.3 to Lemma 3.8, we conclude that $G \in F$. To prove the converse, consider $H \in F$. By Lemma 3.8, if $|V_{14}| = n_1$ and $|V_{23}| = n_2$, then V_{125} and V_{345} are empty sets. Given that $|V_{1234}| = n_5, |V_{1235}| = n_6, |V_{1245}| = n_7, |V_{1345}| = n_8$ and $|V_{2345}| = n_9$, then the basis matrices for VCS of the access structure $\Gamma(H)$ are:

$$
S^1 \sim \begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0_{n_1} & 0_{n_1} & 1_{n_1} & 0_{n_1} \\
1_{n_2} & 0_{n_2} & 0_{n_2} & 0_{n_2} \\
1_{n_5} & 0_{n_5} & 1_{n_5} & 0_{n_5} \\
1_{n_6} & 0_{n_6} & 0_{n_6} & 1_{n_6} \\
0_{n_7} & 0_{n_7} & 1_{n_7} & 1_{n_7} \\
0_{n_8} & 1_{n_8} & 1_{n_8} & 0_{n_8} \\
1_{n_9} & 1_{n_9} & 0_{n_9} & 0_{n_9}
\end{bmatrix}
$$

and

$$
S^0 \sim \begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0_{n_1} & 0_{n_1} & 0_{n_1} & 0_{n_1} \\
1_{n_2} & 1_{n_2} & 0_{n_2} & 0_{n_2} \\
1_{n_5} & 1_{n_5} & 0_{n_5} & 0_{n_5} \\
0_{n_6} & 0_{n_6} & 0_{n_6} & 0_{n_6} \\
1_{n_7} & 1_{n_7} & 0_{n_7} & 0_{n_7} \\
0_{n_8} & 0_{n_8} & 0_{n_8} & 0_{n_8} \\
1_{n_9} & 1_{n_9} & 0_{n_9} & 0_{n_9}
\end{bmatrix}
$$

where $1_n (0_n)$ denotes the $n \times 1$ column matrix with all entries one (zero). It is simple work that S^0 and S^1 are basis matrices for a VCS of the access structure $\Gamma(H)$. Hence $m^*(H) \leq 4$. However H contains K_5, thus $m^*(H) = 4$. Now if $G \in F$, then G is an induced subgraph of H and since G contains K_5 as a subgraph, we have $m^*(G) = 4$.

Further if V_{125} and V_{345} are not empty and $|V_{125}| = n_3$ and $|V_{345}| = n_4$, then by Lemma 3.8 dont exist V_{14} and V_{23} simultaneously. Let $V_{14} \neq \emptyset$, in this case the basis matrices for VCS of the access structure $\Gamma(H)$ are:

http://dx.doi.org/10.22108/toc.2019.113671.1599
In this case, similar to discussion of above, we have $m^*(G) = 4$. □

4. Conclusion

Ateniese et al. [3] have proved that $m^*(\Gamma) = 2$ if and only if $\Gamma = \Gamma(G)$ where G is a complete bipartite graph. Also Arumugam et al. [1] have obtained a characterization of all connected graphs G where $m^*(G) = 3$. If $m^*(G) = 4$ then $\omega(G) \leq 6$. We have obtained previously in [6] a characterization of all connected graphs G for which $\omega(G) = 6$. In this paper, we obtained a characterization of all connected graphs G for which $\omega(G) = 5$. The next problem is to characterize all graphs where $m^*(G) = 4$ and $\omega(G) \leq 4$.

Acknowledgments

The author would like to thank the referee for his/her helpful remarks which have contributed to improve the presentation of the article.

REFERENCES

http://dx.doi.org/10.22108/toc.2019.113671.1599

M. Davarzani

Faculty of Mathematics and Computer Science, Kharazmi University, P.O.Box 1561836314, Tehran, Iran

Email: mahmood.davarzani@gmail.com

http://dx.doi.org/10.22108/toc.2019.113671.1599