SOME SUBGROUPS OF F_q^* AND EXPPLICIT FACTORS OF $x^{2^n} - 1 \in F_q[x]$

MANJIT SINGH

Communicated by Dianhua Wu

Abstract. Let S_q denote the group of all square elements in the multiplicative group F_q^* of a finite field F_q of odd characteristic containing q elements. Let O_q be the set of all odd order elements of F_q^*. Then O_q turns up as a subgroup of S_q. In this paper, we show that $O_q = \langle 4 \rangle$ if $q = 2t + 1$ and, $O_q = \langle t \rangle$ if $q = 4t + 1$, where q and t are odd primes. Further, we determine the coefficients of irreducible factors of $x^{2^n} - 1$ using generators of these special subgroups of F_q^*.

1. Introduction

Factoring polynomials over finite fields plays an important role in algebraic coding theory for the error-free transmission of information and cryptology for the secure transmission of information. Specifically, cyclic codes of length m over finite fields are in one-to-one correspondence with the monic divisors of $x^m - 1$ over finite fields. Hereto, the availability of explicit factors of $x^m - 1$ over finite fields, especially irreducible polynomials over finite fields is useful for analyzing the structure and inner-relationship of codewords of a code and other areas of electrical engineering where linear feedback shift registers (LFSR) are used (see [1, 6, 8]).

Blake, Gao and Mullin [2] explicitly determined all the irreducible factors of $x^p - 1$ over F_p, where p is a prime with $p \equiv 3 \pmod{4}$. Chen, Li and Tuerhong [4] gave the explicit factorization of $x^{2^m} - 1$ over F_q, where p is an odd prime with $q \equiv 1 \pmod{p}$. In [3], Brochero Martínez, Giraldo Vergara and de Oliveira generalized the results in [4] by giving the explicit factorization of

Keywords: Polynomials over finite fields, Cyclotomic polynomials, Special groups.
Received: 25 December 2018, Accepted: 10 November 2019.

DOI: http://dx.doi.org/10.22108/toc.2019.114742.1612
Suppose that Lemma 2.2. results concerning subgroups and their generators of the multiplicative group \(F^* \) that the explicit factors of \(r \) computed the factors of \(r \) explicit factorization of \(2 \). When \(q \) and \(r \) are distinct odd primes, Stein [12] computed the factors of \(\Phi_r(x) \) from the traces of the roots of \(\Phi_r(x) \) over prime field \(\mathbb{F}_q \). Assuming that the explicit factors of \(\Phi_r(x) \) are known, Tuxanidy and Wang [13] obtained the irreducible factors of \(\Phi_{2^r}(x) \) over \(\mathbb{F}_q \), where \(r > 1 \) is an arbitrary odd integer.

In this paper, we investigate the polynomial \(x^{2^n d} - 1 \) and study two subgroups of \(\mathbb{F}_q^* \). Further, we determine the coefficients of irreducible factors of \(x^{2^n t} - 1 \) over \(\mathbb{F}_q \) by using these two special subgroups of \(\mathbb{F}_q^* \), where \(q = 2t + 1 \) or \(q = 4t + 1 \) with odd primes \(q \) and \(t \). This paper also contributes an interesting result, that is, \(t \in \mathbb{F}_q^* \) such that the order of \(t \) is \(t \) for every odd primes \(q \) and \(t \) such that \(q = 4t + 1 \).

The paper is organized as follows: The necessary notation and some known results concerning the cyclotomic polynomials over finite fields are provided in Section 2. In Section 3, assuming \(d \) is an odd divisor of \(q - 1 \), the explicit factorization of \(x^{2^n d} - 1 \) over \(\mathbb{F}_q \) is reformulated in two different cases when \(q \equiv 1 \pmod{4} \) in Theorem 3.2 and, when \(q \equiv 3 \pmod{4} \) in Theorem 3.6. In Section 4, we record few results concerning subgroups and their generators of the multiplicative group \(\mathbb{F}_q^* \). Using these results, the coefficients of irreducible factors of \(x^{2^n t} - 1 \) over \(\mathbb{F}_q \) are obtained effortlessly when \(q \) and \(t \) are primes with \(q = 2t + 1 \) or \(q = 4t + 1 \). In order to illustrate our results, the explicit factorization of \(x^{2^n - 173} - 1 \in \mathbb{F}_{347}[x] \), \(x^{704} - 1 \in \mathbb{F}_{23}[x] \), \(x^{2^n - 37} - 1 \in \mathbb{F}_{149}[x] \) and \(x^{2^n - 13} - 1 \in \mathbb{F}_{53}[x] \) are obtained.

2. Cyclotomic factorization of \(x^{2^n d} - 1 \) over finite fields

For any integer \(n \geq 1 \), a well-known cyclotomic decomposition of \(x^n - 1 \) is as follows:

\[
x^n - 1 = \prod_{k \mid n} \Phi_k(x); \quad \Phi_k(x) = \prod_{\gcd(i,k)=1 \atop 0 \leq i \leq k} (x - \xi^i),
\]

where \(\Phi_k(x) \) is the \(k \)-th cyclotomic polynomial and \(\xi \) is a primitive \(k \)-th root of unity in some extension field of \(\mathbb{F}_q \). The degree of \(\Phi_k(x) \) is \(\phi(k) \), where \(\phi(k) \) is the Euler Totient function. Let \(e \) be the least positive integer such that \(q^e \equiv 1 \pmod{n} \). Then, in \(\mathbb{F}_q[x] \), \(\Phi_n(x) \) splits into the product of \(\phi(n)/e \) monic irreducible polynomials of degree \(e \). In particular, \(\Phi_n(x) \) is irreducible over \(\mathbb{F}_q \) if and only if \(e = \phi(n) \). Note that \(\Phi_n(x) \) is irreducible over \(\mathbb{F}_q \), then \(\Phi_m(x) \) is also irreducible over \(\mathbb{F}_q \) for every \(m \mid n \) (see [8, 10]).

Lemma 2.1. (see [14, Theorem 10.7] and [8, Theorem 3.75]) Let \(l \geq 2 \) be an integer and \(a \in \mathbb{F}_q^* \) such that the order of \(a \) is \(k \geq 2 \). Then the binomial \(x^l - a \in \mathbb{F}_q[x] \) is irreducible over \(\mathbb{F}_q \) if and only if the following conditions are satisfied:

(i) Every prime factor of \(l \) divides \(k \), but does not divide \((q - 1)/k \);

(ii) If \(4 \mid l \), then \(4 \mid (q - 1) \).

Lemma 2.2. (see [14, Theorem 10.15]) Let \(f(x) \) be any irreducible polynomial over \(\mathbb{F}_q \) of degree \(l \geq 1 \). Suppose that \(f(0) \neq 0 \) and \(f(x) \) is of order \(e \) which is equal to the order of any root of \(f(x) \). Let \(k \)

DOI: http://dx.doi.org/10.22108/toc.2019.114742.1612
be a positive integer, then the polynomial $f(x^k)$ is irreducible over \mathbb{F}_q if and only if the following three conditions are satisfied:

(i) Every prime divisor of k divides e;
(ii) $\gcd(k, \frac{q^e-1}{e}) = 1$;
(iii) If $4|k$, then $4|(q^l-1)$.

Lemma 2.3. Suppose that t is an odd prime such that $\gcd(2t, q) = 1$. Then in $\mathbb{F}_q[x]$ the following properties of cyclotomic polynomials hold:

(i) $\Phi_{2^kt}(x) = \Phi_{2^k}(x^t)$,
(ii) $\Phi_{2^k+n}(x) = \Phi_{2^k}(x^{2^n})$ for integers $k \geq 1$ and $r \geq 0$.
(iii) $\Phi_{2^n+e}(x) = \Phi_{2^k}(x^{2^{n-k}e})$ for all integer $n \geq k \geq 1$.

Proof. First and second part are given in [8, Exercise 2.57]. The third part is an immediate consequence of the parts (i) and (ii). \qed

Throughout in this paper, let \mathbb{F}_q be a finite field of q elements with $q = 2^st + 1$ for some integers $s \geq 1$ and t is odd. Let α_{2^k} be a primitive 2^kth root of unity of \mathbb{F}_q^*, where $0 \leq k \leq s$. The following result is immediate from the above description of decomposable cyclotomic polynomials.

Lemma 2.4. If n is a positive integer and d is an odd integer, then a factorization of $x^{2^nd} - 1$ into the product of decomposable cyclotomic polynomials over \mathbb{F}_q is given by:

$$x^{2^nd} - 1 = \begin{cases}
(x^d-1) \prod_{k=1}^{n} \Phi_{2^k}(x^d) & \text{for } 1 \leq n \leq s \\
(x^d-1) \prod_{k=1}^{s} \Phi_{2^k}(x) \prod_{r=1}^{n-s} \Phi_{2^{2^r}}(x^{2^rd}) & \text{for } n > s \geq 1,
\end{cases}$$

where $\Phi_{2^k}(x^d)$ for $1 \leq k \leq s$ and $\Phi_{2^r}(x^{2^rd})$ for $0 \leq r \leq n-s$ can be expressed as follows:

$$\Phi_{2^k}(x^d) = \prod_{1 \leq i \leq 2^{k-1}} (x^d - \alpha_{2^k}^{2i-1}) \text{ and } \Phi_{2^r}(x^{2^rd}) = \prod_{1 \leq i \leq 2^{r-1}} (x^{2^rd} - \alpha_{2^r}^{2i-1}).$$

3. **Factorization of $x^{2^nd} - 1$ over \mathbb{F}_q, when $q \equiv 1 \pmod{2d}$**

In this section, we reformulate the factorization of $x^{2^nd} - 1$ into irreducible factors over \mathbb{F}_q recursively when d is an odd divisor of $q - 1$. In order to determine the complete factorization of $x^{2^nd} - 1$ over \mathbb{F}_q, in view of Lemma 2.4, one needs to split the decomposable cyclotomic polynomials $\Phi_{2^k}(x^d)$ for $1 \leq k \leq s$ and $\Phi_{2^r}(x^{2^rd})$ for $1 \leq r \leq n-s$ into irreducible factors over \mathbb{F}_q.

Lemma 3.1. Let d be an odd integer such that $q \equiv 1 \pmod{2^kd}$, where $1 \leq k \leq s$. Also, let γ be a primitive dth root of unity in \mathbb{F}_q^*. Then, for any integer $r \geq 0$, the complete factorization of $\Phi_{2^k}(x^{2^rd})$
is given by:
\[\Phi_{2k}(x^{2^r}) = \Phi_{2k}(x^{2^r}) \prod_{1 \leq i \leq 2^{k-1}} (x^{2^r} - \alpha_{2^k}^{2i-1} \gamma^j), \]

where
\[\Phi_{2k}(x^{2^r}) = \begin{cases}
\prod_{i=1}^{2^{k+r-1}} (x - \alpha_{2^k}^{2i-1}) & \text{if } k + r \leq s \\
\prod_{i=1}^{2^{k+r-s}} (x^{2^r} - \alpha_{2^k}^{2i-1}) & \text{if } k + r > s.
\end{cases} \]

Proof. For any integer \(r \geq 0 \) and \(1 \leq k \leq s \), observe that
\[\Phi_{2k}(x^{2^r}) = \prod_{1 \leq i \leq 2^{k-1}} (x^{2^r} - \alpha_{2^k}^{2i-1}) = \prod_{1 \leq i \leq 2^{k-1}} ((x^{2^r})^d - \alpha_{2^k}^{d(2i-1)}). \]

Let \(\gamma \) be a primitive \(d \)th root of unity in \(\mathbb{F}_{q^*} \). Then
\[x^d - \alpha_{2^k}^{d(2i-1)} = \prod_{j=0}^{d-1} (x - \alpha_{2^k}^{2i-1} \gamma^j) \]

and hence
\[\Phi_{2k}(x^{2^r}) = \prod_{1 \leq i \leq 2^{k-1}} (x^{2^r} - \alpha_{2^k}^{2i-1} \gamma^j) \]
\[= \Phi_{2k}(x^{2^r}) \prod_{1 \leq i \leq 2^{k-1}} (x^{2^r} - \alpha_{2^k}^{2i-1} \gamma^j). \]

This completes the proof. \(\Box \)

Theorem 3.2. Let \(d \) be any odd integer and \(q \equiv 1 \pmod{2d} \). Then, for any integer \(n \geq 1 \), the factorization of \(x^{2^nd} - 1 \) over \(\mathbb{F}_q \) is given by:

\[x^{2^nd} - 1 = \begin{cases}
\prod_{j=0}^{d-1} (x - \gamma^j) \prod_{1 \leq i \leq n} (x - \alpha_{2^k}^{2i-1} \gamma^j) & \text{if } n \leq s \\
\prod_{j=0}^{d-1} (x - \gamma^j) \prod_{1 \leq i \leq n-s} (x - \alpha_{2^k}^{2i-1} \gamma^j) \prod_{1 \leq r \leq n-s} (x^{2^r} - \alpha_{2^k}^{2i-1} \gamma^j) & \text{if } n > s
\end{cases} \]

Further, if \(n > s \geq 2 \), the factorization \(x^{2^nd} - 1 \) over \(\mathbb{F}_q \) has \(2^{n-1}(n-s+2)d \) irreducible factors, however if \(q \equiv 3 \pmod{4} \), all nonlinear factors in the factorization are reducible over \(\mathbb{F}_q \) except binomials \(x^2 + \gamma^j \) for all \(0 \leq j \leq d-1 \).

DOI: http://dx.doi.org/10.22108/toc.2019.114742.1612
Proof. The desired factorization of $x^{2^n d} - 1$ over \mathbb{F}_q follows immediately from Lemma 2.4 and Lemma 3.1. Further, when $n > s \geq 2$, the irreducibility of its nonlinear factors follows immediately from Lemma 2.1. For $q \equiv 3 \pmod{4}$, i.e. $s = 1$, the factorization of $x^{2^n d} - 1$ over \mathbb{F}_q reduces to

$$x^{2^n d} - 1 = \prod_{j=0}^{d-1} \left((x - \gamma^j)(x + \gamma^j) \prod_{1 \leq r \leq n-1} (x^{2^r} + \gamma^j) \right).$$

Again by Lemma 2.1, factors $x^{2^r} + \gamma^j$ are reducible over \mathbb{F}_q for every $r \geq 2$ and $0 \leq j \leq d - 1$. \hfill \Box

To determine all irreducible factors of $x^{2^n d} - 1$ over \mathbb{F}_q in the case $q \equiv 3 \pmod{4}$, we need to recall the following notation and results of [11].

Let $Q = q^2 = 2^u v + 1$, $u \geq 3$ and $2 \nmid v$. Let β_{2^k} be a primitive 2^kth root of unity in \mathbb{F}_q^*. Note that $\beta_{2^k} := \alpha_{2^k}$ when $\beta_{2^k} \in \mathbb{F}_q$.

(i) A quadratic character χ on $\langle \beta_{2^k} \rangle \subseteq \mathbb{F}_q^*$ is defined as

$$\chi(\beta_{2^k}) = \beta_{2^k}^{q+1} = \begin{cases} 1 & \text{if } 0 \leq k < u, \\ -1 & \text{if } k = u \end{cases}$$

(ii) A trace is a mapping $T : \mathbb{F}_Q \to \mathbb{F}_q$ defined as $T(x) = x + x^q$ for all $x \in \mathbb{F}_Q$. Further, for any integer $r \geq 1$, we define the rth trace $T_r : \mathbb{F}_Q \to \mathbb{F}_q$ such that $T_r(x) = T(x^r)$.

Lemma 3.3. [11, Lemma 2.6] For a fixed k, where $3 \leq k \leq u$, the cyclotomic polynomial $\Phi_{2^k}(x) = x^{2^{k-1}} + 1$ can be expressed into irreducible factors over \mathbb{F}_q as follows:

$$\Phi_{2^k}(x) = \prod_{1 \leq i \leq 2^{k-3}} (x^2 \pm T(\beta_{2^k}^{2^{i-1}})x + \chi(\beta_{2^k})).$$

Lemma 3.4. [11, Theorem 3.3] If $q \equiv 3 \pmod{4}$ and $3 \leq k \leq u$. Then there are 2^{k-2} distinct traces $T(\beta_{2^k}^{2^{i-1}})$ such that the first 2^{k-3} traces are given by the following linear recursive sequence

$$T_{2^{i-1}}(\beta_{2^k}) = T(\beta_{2^k}) T(\beta_{2^{i-1}}) - \chi(\beta_{2^k}) T(\beta_{2^{i-3}})$$

and the rest of 2^{k-3} are $-T(\beta_{2^k}^{2^{i-1}})$. The initial terms of the sequence are $T(\beta_4) = 0$ and $T(\beta_{2^k}) = (T(\beta_{2^{k-1}}) + 2\chi(\beta_{2^k}))^{(t+1)/2}$ for $3 \leq k \leq u$.

Theorem 3.5. Assume that $q \equiv 3 \pmod{4}$ and d is an odd integer with $q \equiv 1 \pmod{d}$. Then $\Phi_d(x^d) = \prod_{0 \leq j \leq d-1} (x^2 + \gamma^j)$ and for $3 \leq k \leq u$, the irreducible factorization of decomposable cyclotomic polynomial $\Phi_{2^k}(x^d)$ over \mathbb{F}_q is given by:

$$\Phi_{2^k}(x^d) = \Phi_{2^k}(x) \prod_{1 \leq i \leq 2^{k-3}} (x^2 \pm T(\beta_{2^k}^{2^{i-1}})x + \chi(\beta_{2^k}) \gamma^{2^{2j}}).$$

Further, for any integer $r \geq 1$ and $3 \leq k \leq u$, the factorization of decomposable cyclotomic polynomial $\Phi_{2^k}(x^{2^r d})$ over \mathbb{F}_q is given by:

$$\Phi_{2^k}(x^{2^r d}) = \Phi_{2^k}(x^{2^r}) \prod_{1 \leq i \leq 2^{k-3}} (x^{2^r + 1} \pm T(\beta_{2^k}^{2^{i-1}})x^{2^r} + \chi(\beta_{2^k}) \gamma^{2^{2j}}).$$

Furthermore, the decomposable polynomial $\Phi_{2^u}(x^{2^u d})$ is a product of 2^{u-2} irreducible trinomials over \mathbb{F}_q, while the decomposable polynomial $\Phi_{2^u}(x^{2^u d})$, where $2 \leq k \leq u-1$, is a product of 2^{k-2} reducible trinomials over \mathbb{F}_q.

Proof. Since q is odd prime power, so $q^2 \equiv 1 \pmod{4}$, i.e., $Q \equiv 1 \pmod{4}$. Replacing q by Q and α_{2k} by β_{2k} in the result of Lemma 3.1, we obtain the factorization of $\Phi_{2^k}(x^d)$ over \mathbb{F}_Q such as

$$\Phi_{2^k}(x^d) = \Phi_{2^k}(x) \prod_{1 \leq j \leq d-1} (x - \beta_{2^k}^{2i-1} \gamma^j).$$

In particular, $\Phi_2(x^d) = x^d+1 = (x+1) \prod_{1 \leq j \leq d-1} (x + \gamma^j)$ and $\Phi_4(x^d) = x^{2d}+1 = (x^2+1) \prod_{1 \leq j \leq d-1} (x^2 + \gamma^j)$.

From Lemma 2.3(iii), for each $3 \leq k \leq u$, we express $\Phi_{2^k}(x^d)$ as follows:

$$\Phi_{2^k}(x^d) = \Phi_{2^{k-2}}(x^{4d}) = \prod_{0 \leq j \leq d-1} (x^4 - \beta_{2^{k-2}}^{2i-1} \gamma^j) = \prod_{0 \leq j \leq d-1} (x - \beta_{2^k}^{2i-1} \gamma^j)(x + \beta_{2^k}^{2i-1} \gamma^j)(x^2 + \beta_{2^k}^{2i-1} \gamma^j).$$

For any fixed $0 \leq j \leq d-1$, using the permutation $i \mapsto 2^{k-3} - i + 1$ on the set of integers $1 \leq i \leq 2^{k-3}$, we obtain

$$\prod_{i=1}^{2^{k-3}} (x^2 + \beta_{2^{k-1}}^{2i-1} \gamma^j) = \prod_{i=1}^{2^{k-3}} (x^2 - \beta_{2^{k-1}}^{-2i+1} \gamma^j).$$

Since $2^{k-1} | (q+1)$, so that $\beta_{2^{k-1}}^{(q+1)/2i-1} = 1$ and hence $\beta_{2^k}^{2(q-1)/2i-1} = \beta_{2^{k-1}}^{-2i+1}$. It follows that

$$\prod_{i=1}^{2^{k-3}} (x^2 - \beta_{2^{k-1}}^{2i-1} \gamma^j) = \prod_{i=1}^{2^{k-3}} (x^2 - \beta_{2^k}^{-q(2i-1)} \gamma^j).$$

Also, since d is odd, the above expression can be written in the following form:

$$\prod_{0 \leq j \leq d-1} (x^2 - \beta_{2^{k-1}}^{2i-1} \gamma^j) = \prod_{0 \leq j \leq d-1} (x^2 - \beta_{2^k}^{-q(2i-1)} \gamma^j),$$

Thus, in view of the above discussion, a factorization of $\Phi_{2^k}(x^d)$ over \mathbb{F}_Q is given by:

$$\Phi_{2^k}(x^d) = \prod_{1 \leq i \leq 2^{k-3}} \prod_{0 \leq j \leq d-1} (x - \beta_{2^{k-1}}^{2i-1} \gamma^j)(x + \beta_{2^{k-1}}^{q(2i-1)} \gamma^j)(x - \beta_{2^k}^{-q(2i-1)} \gamma^j)(x + \beta_{2^k}^{q(2i-1)} \gamma^j).$$

DOI: http://dx.doi.org/10.22108/toc.2019.114742.1612
The following observation is useful to shift the above factorization of $\Phi_{2k}(x^d)$ over the field \mathbb{F}_q. Note that $\beta_{2k}^{2i-1} \gamma^j$ and $-\beta_{2k}^{2i-1} \gamma^j$ are non-conjugate elements in $\mathbb{F}_q \setminus \mathbb{F}_q$ for any $1 \leq i \leq 2^k-3$. Therefore, the minimal polynomial of $\pm \beta_{2k}^{2i-1} \gamma^j$ is $x^2 \pm T(\beta_{2k}^{2i-1} \gamma^j)x + (\beta_{2k}^{2i-1} \gamma^j)^{q+1}$ in $\mathbb{F}_q[x]$. Note that $T(\beta_{2k}^{2i-1} \gamma^j) = \gamma^j T(\beta_{2k}^{2i-1})$ and $(\beta_{2k}^{2i-1} \gamma^j)^{q+1} = \gamma^{2j} \chi(\beta_{2k}^{2i-1}) \gamma(\beta_{2k})$. It follows that

$$\Phi_{2k}(x^d) = \prod_{1 \leq i \leq 2^k-3} \prod_{0 \leq j \leq d-1} (x^2 \pm \gamma^j T(\beta_{2k}^{2i-1})x + \gamma^{2j} \chi(\beta_{2k})).$$

For any integer $r \geq 1$, using the transformation $x \to x^{2^r}$, we have

$$\Phi_{2k}(x^{2^r d}) = \prod_{1 \leq i \leq 2^k-3} \prod_{0 \leq j \leq d-1} (x^{2^{r+1}} \pm \gamma^j T(\beta_{2k}^{2i-1})x^{2^r} + \chi(\beta_{2k}) \gamma^{2j})$$

$$= \Phi_{2k}(x^{2^r}) \prod_{1 \leq i \leq 2^k-3} \prod_{1 \leq j \leq d-1} (x^{2^{r+1}} \pm \gamma^j T(\beta_{2k}^{2i-1})x^{2^r} + \chi(\beta_{2k}) \gamma^{2j}).$$

By Lemma 2.2, every trinomial $x^{2^{r+1}} \pm \gamma^j T(\beta_{2k}^{2i-1})x^{2^r} + \chi(\beta_{2k}) \gamma^{2j}$ is reducible over \mathbb{F}_q for $2 \leq k \leq u-1$ and irreducible over \mathbb{F}_q for $k = u$. □

In the following theorem, we determine the factorization of $x^{2^u d} - 1$ over \mathbb{F}_q, when $q \equiv 3 \pmod{4}$ and $q \equiv 1 \pmod{d}$.

Theorem 3.6. If $q \equiv 3 \pmod{4}$ and $d | (q - 1)$, then $x^{2^u d} - 1$ can be expressed into a product of $d(2^{u-2}(n-u+2) + 1)$ irreducible factors over \mathbb{F}_q as follows:

$$x^{2^u d} - 1 = (x^{2^u} - 1) \prod_{1 \leq j \leq d-1} (x \pm \gamma^j) \prod_{2 \leq k \leq u-1} \prod_{1 \leq j \leq 2^{k-2}} \prod_{1 \leq j \leq d-1} (x^{2^{r+1}} \pm \gamma^j T(\beta_{2k}^{2i-1})x^{2^r} - \gamma^{2j}),$$

Proof. By substituting $s = 1$ in Lemma 2.4, the factorization of $x^{2^u d} - 1$ over \mathbb{F}_q can be reduced to

$$x^{2^u d} - 1 = (x^d - 1) \Phi_2(x^d) \prod_{1 \leq r \leq u-1} \Phi_{2^r}(x^d).$$

Now, we recall $u = \max\{r \in \mathbb{Z} : 2^r | (Q - 1)\}$ and reset the above factorization of $x^{2^u d} - 1$ as follows:

$$x^{2^u d} - 1 = (x^{2^u d} - 1) \prod_{k=2}^{u-1} \Phi_{2^k}(x^d) \prod_{r=u}^{n} \Phi_{2^r}(x^d)$$

$$= \prod_{j=0}^{d-1} ((x \pm \gamma^j)(x^{2^j} + \gamma^j) \prod_{k=3}^{u-1} \Phi_{2^k}(x^d) \prod_{r=0}^{n-u} \Phi_{2^r}(x^{2^r d})).$$

The result, therefore, follows from Theorem 3.5. □

DOI: http://dx.doi.org/10.22108/toc.2019.114742.1612
4. Main results

In this section, we introduce a direct method to obtain the coefficients of irreducible factors of \(\Phi_{2^{nt}}(x) \) and hence of \(x^{2^{nt}} - 1 \) over \(\mathbb{F}_q \) when \(q \) and \(t \) are odd primes such that either \(q = 2t + 1 \) or \(q = 4t + 1 \). First, we define \(S_q = \{ a^2 : a \in \mathbb{F}_q^* \} \) and \(O_q = \{ a \in \mathbb{F}_q^* : |a| \text{ is odd} \} \), where \(|a|\) denotes the order of \(a \in \mathbb{F}_q^* \). Note that \(S_3 = O_3 = \{ 1 \} \), \(O_5 = \{ 1 \} \subset \{ 1, 4 \} = S_5 \), \(S_7 = O_7 = \{ 1, 2, 4 \} \).

Theorem 4.1. For any odd prime power \(q \), \(S_q \) and \(O_q \) are subgroups of \(\mathbb{F}_q^* \) such that \(O_q \subseteq S_q \). Further, if \(q = 2^s t + 1 \) for some integer \(s \geq 1 \) and \(t \) is an odd integer, then \(O_q \) has \(t \) distinct elements and the set \(S_q \setminus O_q \) contains \((2^{s-1} - 1)t \) elements of \(S_q \). Deduce, \(O_q = S_q \) if and only if \(q \equiv 3 \mod 4 \).

Proof. Let \(q = 2^s t + 1 \) with integer \(s \geq 1 \) and \(t \) is odd. Since \(S_q \) contains \((q-1)/2\) distinct elements of \(\mathbb{F}_q^* \), so the order of \(S_q \), i.e., \(|S_q| = 2^{s-1}t \). Now let \(a \in O_q \) with \(|a| = l \), then \(l \) is odd. By the converse of Lagrange’s theorem, \(l | (q - 1) \). Since \(l \) is odd, so \(l | t \) and hence \(a \in S_q \). It follows that \(O_q \subseteq S_q \) and \(|O_q| = \max \{ l : |a| = l \text{ and } a \in O_q \} = t \). Therefore, \(S_q \setminus O_q \) contains \((2^{s-1} - 1)t \) elements. Also, note that \(q \equiv 3 \mod 4 \), i.e., \(s = 1 \) if and only if \(S_q \setminus O_q = \emptyset \), i.e., all square elements are of odd order and hence \(O_q = S_q \). \(\square \)

Theorem 4.2. Let \(q \) and \(t \) be odd primes such that \(q = 2t + 1 \). Then \(S_q = O_q = \langle 4 \rangle \).

Proof. Since \(q = 2t + 1 \), where \(q \) and \(t \) are odd primes, so \(q \equiv 3 \mod 4 \). Thus, by Theorem 4.1, \(S_q = O_q \). Since \(q > 5 \), so \(4 \in \mathbb{F}_q^* \). Clearly, \(4 \in O_q \). Since \(O_q \) is cyclic group of prime order \(t \), so any element of \(O_q \), except 1, works as a generator and hence \(O_q = \langle 4 \rangle \). \(\square \)

Lemma 4.3. [7, Corollary 7.10] If \(p \) is an odd prime, then
\[
\left(\frac{2}{p} \right) = (-1)^{(p^2 - 1)/8}.
\]

Theorem 4.4. Let \(q \) and \(t \) be odd primes such that \(q = 4t + 1 \). Then \(t, \sqrt{t} \in S_q \). Further, the following holds:

(i) \(O_q = \langle t \rangle \).

(ii) \(S_q = \langle 4 \rangle \) and \(O_q = \langle 16 \rangle \) for \(q > 13 \).

Proof. Let \(q = 4t + 1 \), where \(q \) and \(t \) are primes. Since \(4, -1 \in S_q \) and \(4t = -1 \in \mathbb{F}_q^* \), so that \(t \in S_q \) and hence \(\sqrt{t} \in \mathbb{F}_q^* \). From Lemma 4.3, it follows that \(2 \notin S_q \) as \(q \equiv 5 \mod 8 \). Since \(2\sqrt{t} = \sqrt{-1} \) or \(2\sqrt{t} = -\sqrt{-1} \) with 2 and \(\pm \sqrt{-1} \) do not belong to \(S_q \), so that \(\sqrt{t} \in S_q \) because the product of a square and non-square element always a non-square element in \(\mathbb{F}_q^* \).

(i) In this item, we shall show that \(t \) is an element of \(O_q \) of the order \(t \), that is \(|t| = t\), where \(|t|\) denotes the order of \(t \) in \(\mathbb{F}_q^* \). Since \(t \in S_q \), so \(|t| = t \) or \(2t \). On contrary, we assume \(|t| = 2t \). This yields that \(t^t \equiv -1 \mod q \). Using the fact \(4t \equiv -1 \mod q \) and applying the arithmetic in \(\mathbb{F}_q \), we have \(t^{(t-1)/2} \equiv 2 \equiv 0 \mod q \). This implies \(2 \in S_q \) or \(-2 \in S_q \), a contradiction.
Further, for primitive T. Example 4.2. follows that and T. Example 4.1.

Proof. Theorem 4.8.

Corollary 4.5. Let q and t be odd primes such that $q = 4t + 1$. Then $t \in \mathbb{F}_q^*$ such that the order of t is t.

Remark 4.6. Since $t \in \mathcal{O}_q = \langle 16 \rangle$, so $t = 16^i$ for some unique integer $1 \leq i \leq t - 1$. Thus $\sqrt{t} = 4^i$ and hence $\sqrt{t} \in \mathcal{S}_q$. For example taking $q = 53$, then $t = 13 = 16^6$ and $\sqrt{t} = 16^3 = 15 \in \mathcal{O}_{53}$.

In the following two theorems, we obtain the factorization of $x^{2n^t} - 1$ into irreducible factors over \mathbb{F}_q when either $q = 2t + 1$ or $q = 4t + 1$.

Theorem 4.7. Let q and t be odd primes such that $q = 2t + 1$, then

$$x^{2nt} - 1 = \prod_{0 \leq j \leq t-1} (x + 4^j) \prod_{2 \leq k \leq u-1 \atop 1 \leq j \leq 2k-2} (x^2 - 4^j T(\beta_{2k}^{2j-1}) x + 4^{2j}) \prod_{0 \leq r \leq n-u \atop 1 \leq j \leq 2r-3} (x^{2r+1} + 4^j T(\beta_{2r}^{2j-1}) x^{2r} - 4^{2j}).$$

Proof. The proof follows immediately by using Theorem 3.4, Theorem 3.6 and Theorem 4.2.

Theorem 4.8. Let q and t be odd primes such that $q = 4t + 1$. Then the factorization of $x^{2nt} - 1$ into the product of $2nt$ irreducible polynomials over \mathbb{F}_q is given by:

$$x^{2nt} - 1 = \prod_{j=0}^{t-1} \left((x + 16^j)(x + \sqrt{-1} \cdot 16^j) \prod_{1 \leq r \leq n-2} (x^{2r} \pm \sqrt{-1} \cdot 16^j)\right).$$

Proof. The proof follows immediately from Theorem 3.2 and Theorem 4.4.

Example 4.1. Let $q = 347 = 2 \cdot 173 + 1$. Then $s = 1$, $t = 173$ and $u = 3$. Now $\beta_2 = -1$, $T(\beta_4) = 0$ and $T(\beta_8) = \sqrt{-2} = (-2)^{87} = 107$. By Theorem 4.2, 4 is a primitive 173th root of unity in \mathbb{F}_{347}^*. It follows that $x^{173} - 1 = \prod_{j=0}^{172} (x - 4^j)$ and $x^{173} + 1 = \prod_{j=0}^{172} (x + 4^j)$. Also $x^{346} + 1 = \prod_{j=0}^{172} (x^2 + 4^j)$. Further, for $n \geq 3$, by Theorem 4.7, the factorization of $x^{2n^{173}} - 1$ into 173($2n-1$) irreducible factors over \mathbb{F}_{347} is given by:

$$x^{2n^{173}} - 1 = \prod_{0 \leq j \leq 172} (x + 4^j) (x^2 + 4^{2j}) \prod_{0 \leq r \leq n-3} (x^{2r+1} + 4^j \cdot 107 x^{2r} - 4^{2j}).$$

Example 4.2. Let $q = 23 = 2 \cdot 11 + 1$. Then $s = 1$, $t = 11$ and $u = 4$. In \mathbb{F}_{23}, $\beta_2 = -1$, $T(\beta_4) = 0$, $T(\beta_8) = \sqrt{2} = 2^6 = -5$ and $T(\beta_{16}) = \sqrt{-5 - 2} = (-7)^6 = 4$, $T_3(\beta_{16}) = 7$. By Theorem 4.2, 4 is a primitive 11th root of unity in \mathbb{F}_{11}^*. It follows that $x^{11} - 1 = \prod_{j=0}^{10} (x - 4^j)$ and $x^{11} + 1 = \prod_{j=0}^{10} (x + 4^j)$.
Also $x^{22} + 1 = \prod_{j=0}^{10} (x^2 + 4^j)$. Further, by Theorem 4.7, the factorization of $x^{352} - 1$ into 143 irreducible factors over \mathbb{F}_{23} is given as:

$$x^{352} - 1 = \prod_{0 \leq j \leq 10} \left((x + 4^j) \prod_{1 \leq i \leq 2^{k-2}} (x^2 - 4^j \mathbb{T}(\beta_{2^i-1}^{2^k-1})x + 4^{2j}) \right) \prod_{1 \leq i \leq 2} (x^2 + 4^i \mathbb{T}(\beta_{2^i-1}^{2} - 1)x - 4^{2j})(x^4 + 4^i \mathbb{T}(\beta_{16}^{2(2i-1)})x^2 - 4^{2j})$$

$$= (x^{44} - 1) \prod_{0 \leq j \leq 10, \eta \in \{4, 7\}} \left((x^2 + 4^j \cdot 5x + 4^{2j}) \right) \cdot (x^2 + 4^j \eta x - 4^{2j})(x^4 + 4^j \eta x^2 - 4^{2j})$$.

Furthermore, using recursive approach, the factorization of $x^{704} - 1$ into 187 irreducible factors over \mathbb{F}_{23} is given by

$$x^{704} - 1 = (x^{352} - 1) \prod_{0 \leq j \leq 10, \eta \in \{4, 7\}} (x^8 + 4^j \eta x^4 - 4^{2j})$$.

Example 4.3. Let $q = 149 = 4 \cdot 37 + 1$. Then $s = 2$, $t = 37$. By Theorem 4.4, $\alpha_4 = \sqrt{-1} = \sqrt{148} = 2\sqrt{37} = 2 \cdot 16^9 = -44$. Using Theorem 4.8, the factorization of $x^{2^n \cdot 37} - 1$ over \mathbb{F}_{149} can be written into a product of $74n$ irreducible factors as follows:

$$x^{2^n \cdot 37} - 1 = \prod_{j=0}^{36} \left((x + 16^j)(x + 44 \cdot 16^j) \prod_{1 \leq r \leq n-2} (x^{2r} + 44 \cdot 16^j) \right)$$.

Example 4.4. Let $q = 53 = 4 \cdot 13 + 1$. Then $s = 2$, $t = 13$. By Theorem 4.4, $\alpha_4 = \sqrt{-1} = \sqrt{52} = 2\sqrt{13} = 2 \cdot 16^3 = 30$. Using Theorem 4.8, the factorization of $x^{2^n \cdot 13} - 1$ over \mathbb{F}_{53} can be written into a product of $26n$ irreducible factors as follows:

$$x^{2^n \cdot 13} - 1 = \prod_{j=0}^{12} \left((x + 16^j)(x + 30 \cdot 16^j) \prod_{1 \leq r \leq n-2} (x^{2r} + 30 \cdot 16^j) \right)$$.

Acknowledgments

The author would like to sincerely thank the anonymous referees for a careful reading and helpful comments. Their suggestions were valuable to create an improved final version.

References

Manjit Singh

Department of Mathematics, Deenbandhu Chhotu Ram University of Science and Technology
Murthal-131039, Sonepat, India

Email: manjitsingh.math@gmail.com

DOI: http://dx.doi.org/10.22108/toc.2019.114742.1612