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ON A RELATION BETWEEN SZEGED AND WIENER INDICES OF
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Abstract. Hansen et. al., using the AutoGraphiX software package, conjectured that the Szeged

index Sz(G) and the Wiener index W (G) of a connected bipartite graph G with n ≥ 4 vertices and

m ≥ n edges, obeys the relation Sz(G) −W (G) ≥ 4n − 8. Moreover, this bound would be the best

possible. This paper offers a proof to this conjecture.

1. Introduction

All graphs considered in this paper are finite, undirected and simple. We refer the readers to [3]

for terminology and notation. Let G be a connected graph with vertex set V (G) and edge set E(G).

For u, v ∈ V (G), d(u, v) denotes the distance between u and v. If the graph G is connected, then its

Wiener index is defined as

W (G) =
∑

{u,v}⊆V (G)

d(u, v) .

This topological index has been extensively studied in the mathematical literature; see, e.g., [4, 9, 10, 6].

Let e = uv be an edge of G. Define three sets as follows:

Nu(e) = {w ∈ V (G) : d(u,w) < d(v, w)}

Nv(e) = {w ∈ V (G) : d(v, w) < d(u,w)}

N0(e) = {w ∈ V (G) : d(u,w) = d(v, w)} .
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Thus, {Nu(e), Nv(e), N0(e)} is a partition of the vertex set of G with regard to e ∈ E(G). The number

of elements of Nu(e), Nv(e), and N0(e) will be denoted by nu(e), nv(e), and n0(e), respectively.

Evidently, if n is the number of vertices of the graph G, then nu(e) + nv(e) + n0(e) = n.

If G is bipartite, then the equality n0(e) = 0 holds for all e ∈ E(G). Therefore, for any edge e of a

a bipartite graph, nu(e) + nv(e) = n.

A long time known property of the Wiener index is the formula [4, 11, 20]:

(1.1) W (G) =
∑

e=uv∈E

nu(e)nv(e)

which is applicable for trees. Motivated by the above formula, one of the present authors [7] introduced

a graph invariant, named as the Szeged index, defined by

Sz(G) =
∑

e=uv∈E

nu(e)nv(e) .

where G is any graph, not necessarily connected. Evidently, the Szeged index is defined as a proper

extension of the formula (1.1) for the Wiener index of trees.

Details of the theory of the Szeged index can be found in [8] and in the recent papers [1, 18, 2, 5,

13, 13, 14, 15, 16, 17, 21].

In [12] Hansen et. al. used the AutoGraphiX software package and made the following conjecture:

Conjecture 1.1. Let G be a connected bipartite graph with n ≥ 4 vertices and m ≥ n edges. Then

Sz(G)−W (G) ≥ 4n− 8 .

Moreover the bound is best possible as shown by the graph composed of a cycle C4 on 4 vertices and a

tree T on n− 3 vertices sharing a single vertex.

This paper offers a confirmative proof to this conjecture.

2. Main Results

In [19], another expression for the Szeged index was put forward, namely

(2.1) Sz(G) =
∑

e=uv∈E(G)

nu(e)nv(e) =
∑

e=uv∈E(G)

∑
{x,y}⊆V (G)

µx,y(e)

where µx,y(e), interpreted as the contribution of the vertex pair x and y to the product nu(e)nv(e),

is defined as:

µx,y(e) =


1 if


d(x, u) < d(x, v) and d(y, v) < d(y, u)
or
d(x, v) < d(x, u) and d(y, u) < d(y, v)

0 otherwise.

We first show that for a 2-connected bipartite graph Conjecture 1.1 is true.
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Lemma 2.1. Let G be a 2-connected bipartite graph of order n ≥ 4. Then

Sz(G)−W (G) ≥ 4n− 8

with equality if and only if G ∼= C4 .

Proof. From Eq. (2.1), we know that

Sz(G)−W (G) =
∑

{x,y}⊆V (G)

∑
e∈E(G)

µx,y(e)−
∑

{x,y}⊆V (G)

d(x, y)

=
∑

{x,y}⊆V (G)

 ∑
e∈E(G)

µx,y(e)− d(x, y)

 .
Claim: For every pair {x, y} ⊆ V (G), we have∑

e∈E(G)

µx,y(e)− d(x, y) ≥ 1 .

In fact, if xy ∈ E(G), that is d(x, y) = 1, then we can find a shortest cycle C containing x and y

since G is 2-connected. Then, G[C] has no chord. Since G is bipartite, the length of C is even. There

is an edge e′ which is the antipodal edge of e = xy in C. It is easy to check that µx,y(e′) = µx,y(e) = 1.

So the claim is true.

If d(x, y) ≥ 2, let P1 be a shortest path from x to y and P2 be a second-shortest path from x to y,

that is, P2 6= P1 and |P2| = min {|P ||P is a path from x to y and P 6= P1}. Since G is 2-connected, P2

always exists. If there is more than one path satisfying the condition, we choose P2 as a one having

the greatest number of common vertices with P1 .

If E(P1)
⋂
E(P2) = ∅, let P1

⋃
P2 = C, and then |E(P2)| ≥ |E(P1)| and all the antipodal edges of

P1 in C make µx,y(e) = 1. We also know that µx,y(e) = 1 for all e ∈ E(P1). Hence,
∑

e∈E(G)

µx,y(e) −

d(x, y) ≥ d(x, y) > 1.

If E(P1)
⋂
E(P2) 6= ∅, then P14P2 = C, where C is a cycle. Let P ′i = Pi

⋂
C = x′Piy

′. It is

easy to see that |E(P ′2)| ≥ |E(P ′1)|, and the shortest path from x (or y) to the vertex v in P ′2 is

xP2x
′ (or yP2y

′) together with the shortest path from x′ (or y′) to v in C. So, all the antipodal

edges of P ′1 in C make µx,y(e) = 1. We also know that µx,y(e) = 1 for all e ∈ E(P1). Hence,∑
e∈E(G)

µx,y(e) = |E(P1)|+ d(x′, y′) ≥ d(x, y) + 1, which proves the claim.

Now, let C = v1v2 . . . vpv1 be a shortest cycle in G, where p is even and p ≥ 4. Actually, for every

e ∈ E(C) we have that µvi,vp/2+i
(e) = 1 for i = 1, 2, . . . , p

2 . Then
∑

e∈E(G)

µvi,vp/2+i
(e) = |C| = p, that is,∑

e∈E(G)

µvi,vp/2+i
(e)− d(vi, vp/2+i) = p/2 ≥ 2. Combining this with the claim, we have that

Sz(G)−W (G) ≥
(
n

2

)
+
p

2

(p
2
− 1
)
≥
(
n

2

)
+ 2 ≥ 4n− 8 .
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The last two equalities hold if and only if p = 4, n = 4 or 5. If n = 4, p = 4, then G ∼= C4 . If

n = 5, p = 4, then G ∼= K2,3, and in this case we can easily calculate that Sz(G)−W (G) > 12. Thus,

the equality holds if and only if G ∼= C4 .

�

We now complete the proof of Conjecture 1.1 in the general case.

Theorem 2.2. Let G be a connected bipartite graph with n ≥ 4 vertices and m ≥ n edges. Then

Sz(G)−W (G) ≥ 4n− 8 .

Equality holds if and only if G is composed of a cycle C4 on 4 vertices and a tree T on n− 3 vertices

sharing a single vertex.

Proof. We have proved that the conclusion is true for a 2-connected bipartite graph. Now suppose

that G is a connected bipartite graph with blocks B1, B2, . . . , Bk , where k ≥ 2. Let |Bi| = ni. Then,

n1 + n2 + · · · + nk = n + k − 1. Since m ≥ n and G is bipartite, there exists at least one block, say

B1 , such that n1 ≥ 4. Consider a pair {x, y} ⊆ V . We have the following four cases:

Case 1: x, y ∈ Bi , and ni ≥ 4. Then for every e ∈ Bj , j 6= i we have µx,y(e) = 0, which combined

with Lemma 2.1 yields

∑
{x,y}⊆Bi

 ∑
e∈E(G)

µx,y(e)− d(x, y)

 =
∑

{x,y}⊆Bi

 ∑
e∈E(Bi)

µx,y(e)− d(x, y)

 ≥ 4ni − 8 .

Case 2: x, y ∈ Bi , and ni = 2. In this case,

∑
{x,y}⊆Bi

 ∑
e∈E(G)

µx,y(e)− d(x, y)

 = 0 = 4ni − 8 .

Case 3: x ∈ B1 , y ∈ Bi , i 6= 1. Let P be a shortest path from x to y, and let w1, wi be the cut

vertices in B1 and Bi , such that every path from a vertex in B1 to Bi must go through w1, wi . By

the proof of Lemma 2.1, we can find an edge e′ ∈ E(B1)\E(P ) , such that µx,w1(e′) = 1. Because

every path from a vertex in B1 to y must go through w1, we have µx,y(e′) = 1. We also know that

µx,y(e) = 1 for all e ∈ E(P ). Hence,
∑

e∈E(G)

µx,y(e)− d(x, y) ≥ 1.

We are now in the position to show that for all y ∈ Bi\{wi}, we can find a vertex z ∈ B1\{w1}
such that

∑
e∈E(G)

µz,y(e)− d(z, y) ≥ 2. Since B1 is 2-connected with n1 ≥ 4, there is a cycle containing

w1. Let C be a shortest cycle containing w1, say C = v1v2 . . . vpv1, where v1 = w1 and p is even. Set

z = vp/2+1. By the proof of Lemma 2.1, we have that
∑

e∈E(B1)

µz,w1(e)− d(z, w1) ≥ p/2 ≥ 2. It follows

that there are two edges e′, e′′, that are not in the shortest path from z to w1 , such that µz,w1(e′) = 1

and µz,w1(e′′) = 1. Thus, µz,y(e′) = 1 and µz,y(e′′) = 1. Hence,
∑

e∈E(G)

µz,y(e)− d(z, y) ≥ 2.
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If we fix Bi , we obtain that

∑
x∈B1\{w1}
y∈Bi\{wi}

 ∑
e∈E(G)

µx,y(e)− d(x, y)

 ≥ (n1 − 1)(ni − 1) + (ni − 1) = n1(ni − 1) .

Case 4: x ∈ Bi , y ∈ Bj , i ≥ 2, j ≥ 2, i 6= j. Let P be a shortest path between x and y. If P passes

through a block B` with n` ≥ 4, and |B`
⋂
P | ≥ 2, then we have that

∑
e∈E(G)

µx,y(e) − d(x, y) ≥ 1.

Otherwise,
∑

e∈E(G)

µx,y(e)− d(x, y) ≥ 0. So,

∑
x∈Bi\{wi}
y∈Bj\{wj}

 ∑
e∈E(G)

µx,y(e)− d(x, y))

 ≥ 0 .

Equality holds if and only if P passes through a block B` with n` = 2 or n` ≥ 4, and |B`
⋂
P | = 1.

From the above four cases it follows that

Sz(G)−W (G) =
∑

{x,y}⊆V (G)

∑
e∈E(G)

µx,y(e)−
∑

{x,y}⊆V (G)

d(x, y)

=
∑

{x,y}⊆V (G)

 ∑
e∈E(G)

µx,y(e)− d(x, y)



=
k∑

i=1

∑
{x,y}⊆Bi

 ∑
e∈E(G)

µx,y(e)− d(x, y)

+
k∑

j=2

∑
x∈B1\{w1}
y∈Bj\{wj}

 ∑
e∈E(G)

µx,y(e)− d(x, y)



+
1
2

∑
i 6=j

i 6=1,j 6=1

∑
x∈Bi\{wi}
y∈Bj\{wj}

 ∑
e∈E(G)

µx,y(e)− d(x, y)

 ≥ k∑
i=1

(4ni − 8) + n1

k∑
j=2

(nj − 1)

= 4(n+ k − 1)− 8k + n1(n− n1) = 4n− 4k − 4 + n1(n− n1) .

Since n1 +n2 + · · ·+nk = n+k−1, n1 ≥ 4 , ni ≥ 2, for 2 ≤ i ≤ k, we have that 4 ≤ n1 ≤ n−k+1,

and 2 ≤ k ≤ n− 3.

If k ≥ 5, then n1(n− n1) ≥ 4(n− 4). Thus,

4n− 4k − 4 + n1(n− n1) ≥ 8n− 4k − 20 ≥ 8n− 4(n− 3)− 20 = 4n− 8 .

Equality holds if and only if n1 = 4 , n2 = n3 = · · · = nn−3 = 2 i.e., if B2, B3, . . . , Bn−3 form a tree

T on n− 3 vertices, that shares a single vertex with B1 .

If 2 ≤ k ≤ 4, then n1(n− n1) ≥ (n− k + 1)(k − 1).
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If k = 2, then 4n − 4k − 4 + (n − k + 1)(k − 1) = 5n − 13 ≥ 4n − 8. Equality holds if and only if

n = 5, G is a graph composed of a cycle on 4 vertices and a pendant edge.

If k = 3, then 4n − 4k − 4 + (n − k + 1)(k − 1) = 6n − 20 ≥ 4n − 8. Equality holds if and only if

n = 6, G is a graph composed of a cycle on 4 vertices and a tree on 3 vertices sharing a single vertex.

If k = 4, then 4n − 4k − 4 + (n − k + 1)(k − 1) = 7n − 29 ≥ 4n − 8. Equality holds if and only if

n = 7, G is a graph composed of a cycle on 4 vertices and a tree on 4 vertices sharing a single vertex.

By this, the proof of Theorem 2.2 is completed. �

Remark 2.3. The method used in the proof of Theorem 2.2 is not applicable to non-bipartite graphs.

This is because given a 2-connected non-bipartite graph G, for any two vertices x, y ∈ V (G), if C is

an odd cycle, where C is defined as in Lemma 2.1, we cannot get
∑

e∈E(G)

µx,y(e)− d(x, y) ≥ 1. Hence,

for non-bipartite graphs we do not have an auxiliary result like Lemma 2.1.
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