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ABSTRACT. Hansen et. al., using the AutoGraphiX software package, conjectured that the Szeged
index Sz(G) and the Wiener index W(G) of a connected bipartite graph G with n > 4 vertices and
m > n edges, obeys the relation Sz(G) — W(G) > 4n — 8. Moreover, this bound would be the best

possible. This paper offers a proof to this conjecture.

1. Introduction

All graphs considered in this paper are finite, undirected and simple. We refer the readers to [3]
for terminology and notation. Let G be a connected graph with vertex set V(G) and edge set F(G).
For u,v € V(G), d(u,v) denotes the distance between u and v. If the graph G is connected, then its
Wiener index is defined as

WG = > duv).
{uw}CV(G)
This topological index has been extensively studied in the mathematical literature; see, e.g., [4} 9, 10} 6].

Let e = uv be an edge of G. Define three sets as follows:
Ny(e) = {weV(G): du,w) <
Ny(e) = {weV(GQ):d(v,w) <
No(e) = {weV(Q):d(u,w)=
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Thus, {Ny(e), Ny(e), No(e)} is a partition of the vertex set of G with regard to e € E(G). The number
of elements of Ny(e), Ny(e), and Ny(e) will be denoted by ny(e), ny(e), and ng(e), respectively.
Evidently, if n is the number of vertices of the graph G, then n,(e) + ny(e) + no(e) = n.
If G is bipartite, then the equality ng(e) = 0 holds for all e € E(G). Therefore, for any edge e of a
a bipartite graph, n,(e) + ny,(e) = n.
A long time known property of the Wiener index is the formula [4, [T}, 20]:
(1.1) W(G) = D nule)nyle)
e=uvEE
which is applicable for trees. Motivated by the above formula, one of the present authors [7] introduced
a graph invariant, named as the Szeged indez, defined by
S2(G) = Y nule)nule) .
e=uv€E
where G is any graph, not necessarily connected. Evidently, the Szeged index is defined as a proper
extension of the formula for the Wiener index of trees.
Details of the theory of the Szeged index can be found in [§] and in the recent papers [T}, [I8] 2] [
13, (13, 14, 15}, (16, (17, 21).

In [I2] Hansen et. al. used the AutoGraphiX software package and made the following conjecture:
Conjecture 1.1. Let G be a connected bipartite graph with n > 4 vertices and m > n edges. Then
Sz(G)—W(G) >4n -8 .

Moreover the bound is best possible as shown by the graph composed of a cycle Cy on 4 vertices and a

tree T on n — 3 vertices sharing a single vertex.

This paper offers a confirmative proof to this conjecture.

2. Main Results

In [I9], another expression for the Szeged index was put forward, namely
(2.1) SxG) = > mue)mle)= > > Hayle)
e=w€E(Q) e=w€E(Q) {z,y}CV(G)

where /i (€), interpreted as the contribution of the vertex pair z and y to the product n,(e) n,(e),

is defined as:

d(z,u) < d(z,v) and d(y,v) < d(y,u)
1 if < or
Hay(€) = d(z,v) < d(z,u) and d(y,u) < d(y,v)
0 otherwise.

\

We first show that for a 2-connected bipartite graph Conjecture [1.1]is true.
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Lemma 2.1. Let G be a 2-connected bipartite graph of order n > 4. Then
Sz(G) = W(G) > 4n — 8

with equality if and only if G =2 Cy .

Proof. From Eq. , we know that

S2(G) =W(G) = X D magle)— Y dzy)

{zy}CV(G) ecE(G) {zy}cv(@)

= > | D meyle) —day)

{zy}CV(G) [ecE(G)

Claim: For every pair {z,y} C V(G), we have

D payle) —d@y) > 1.

e€cE(G)

In fact, if zy € E(G), that is d(x,y) = 1, then we can find a shortest cycle C' containing x and y
since G is 2-connected. Then, G[C] has no chord. Since G is bipartite, the length of C' is even. There
is an edge €’ which is the antipodal edge of e = zy in C. It is easy to check that piz (') = pzy(e) = 1.
So the claim is true.

If d(z,y) > 2, let P, be a shortest path from z to y and P» be a second-shortest path from x to y,
that is, P» # P; and |P2| = min {|P||P is a path from x to y and P # P;}. Since G is 2-connected, P»
always exists. If there is more than one path satisfying the condition, we choose P» as a one having
the greatest number of common vertices with P .

If E(P )N E(P2) =0,let PP, =C, and then |E(P,)| > |E(Py)| and all the antipodal edges of

P; in C make p,,(e) = 1. We also know that p,,(e) =1 for all e € E(Py). Hence, Y pgy(e) —
e€E(GQ)
d(z,y) = d(z,y) > 1.

If E(P)E(P) # 0, then PLAP, = C, where C is a cycle. Let P/ = P;(\C = 2/Py/. It is
easy to see that |E(Pj)| > |E(Py)|, and the shortest path from z (or y) to the vertex v in Pj is
xPyx’ (or yPyy') together with the shortest path from z’ (or ') to v in C. So, all the antipodal
edges of P| in C' make py(e) = 1. We also know that p,,(e) = 1 for all e € E(P;). Hence,

Yo tey(e) =|E(P)| +d(2',y') > d(x,y) + 1, which proves the claim.
ee?\gg\)zv, let C'= v1v2...v,v1 be a shortest cycle in G, where p is even and p > 4. Actually, for every
e € E(C) we have that 0, ,,,(e) =1fori=1,2,..., 5. Then CGEZ( (e) = |C| = p, that is,
GEEZ(G) [oi0, /41 (€) — d(Vis Vpja4i) = p/2 > 2. Combining this with the claim, we have that

oo /045
a

S2(Q) — W(G) > (Z)Jrg(g—l)z <Z>—|—224n—8.
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The last two equalities hold if and only if p =4, n =4 or 5. If n = 4,p = 4, then G = Cy. If
n=75,p =4, then G = Ky 3, and in this case we can easily calculate that Sz(G) — W(G) > 12. Thus,
the equality holds if and only if G = Cy.

Il

We now complete the proof of Conjecture in the general case.

Theorem 2.2. Let G be a connected bipartite graph with n > 4 vertices and m > n edges. Then
Sz(G) —W(G) >4n -8 .

Equality holds if and only if G is composed of a cycle Cy on 4 vertices and a tree T on n — 3 vertices

sharing a single vertex.

Proof. We have proved that the conclusion is true for a 2-connected bipartite graph. Now suppose
that G is a connected bipartite graph with blocks By, Bo, ..., By, where k > 2. Let |B;| = n;. Then,
ni+ne+---+nr =n+k—1. Since m > n and G is bipartite, there exists at least one block, say

By, such that ny > 4. Consider a pair {z,y} C V. We have the following four cases:

Case 1: z,y € B;, and n; > 4. Then for every e € B; , j # i we have p, ,(e) = 0, which combined
with Lemma [2.1] yields

Z Z fay(e) —d(z,y)| = Z Z poy(e) —d(z,y)| >4n; —8 .
)

{z,y}CB; |e€E(G {z,y}CB; | e€E(B;)

Case 2: =,y € B;, and n; = 2. In this case,

> > tayle) —d(x,y)| =0=4n; - 8.

{zy}CB; |e€E(G)

Case 3: x € By, y€ B; , i #1. Let P be a shortest path from z to y, and let wy,w; be the cut
vertices in By and B;, such that every path from a vertex in B; to B; must go through wi,w;. By
the proof of Lemma we can find an edge € € E(B1)\E(P), such that jig ., (¢') = 1. Because
every path from a vertex in By to y must go through wi, we have p, ,(e’) = 1. We also know that

pay(e) =1 for all e € E(P). Hence, > jpigy(e) —d(z,y) > 1.
e€E(Q)

We are now in the position to show that for all y € B;\{w;}, we can find a vertex z € Bi\{w:}

such that Y . ,(e) —d(z,y) > 2. Since By is 2-connected with n; > 4, there is a cycle containing
e€E(G)
wy. Let C be a shortest cycle containing wq, say C = v1v2 ... v,v1, where v1 = wy and p is even. Set

z = vp/241- By the proof of Lemma we have that Y~ 1,4, (e) —d(z,w1) > p/2 > 2. It follows
e€E(B1)
that there are two edges €/, €”, that are not in the shortest path from z to wy , such that i, 4, (¢/) =1

and fi; ., (€”) = 1. Thus, u,,(e') =1 and p,,(e”) = 1. Hence, > .y (e) —d(z,y) > 2.
e€E(Q)
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If we fix B;, we obtain that

Y1 tay(e)—d@y)| = (m = 1D(ni— 1)+ (n; — 1) = na(n; — 1) .
z€B1\{w1} | e€E(G)
ye B\ {w;}

Case 4: x€ B;, yc Bj, 1>2,5>2,i# j. Let P be a shortest path between z and y. If P passes

through a block By with ny, > 4, and |By()P| > 2, then we have that Z P y(e) —d(z,y) > 1.
e€E(Q)
Otherwise, Z Lz y(e) —d(z,y) > 0. So,
e€E(Q)

S Y teyle) —dlzy)| =0.

z€B;\{wi} |[e€E(G)
yeB;\{w;}

Equality holds if and only if P passes through a block By with ny =2 or ny > 4, and |By( | P| = 1.

From the above four cases it follows that

SG) W@ = Y Y payle > dx,y)

{z.y}CV(G) ecE(G) {zy}CV(G)

= > > tayle) —d(z,y)

{zy}CV(G) [ecE(G)

k k
- Z Z Z :ufﬂ,y —d(z,y) +Z Z Z Mm,y d(z,y)

i=1 {z,y}CB; |ecE(G j=2zeB1\{w1} |e€E(G
yeB;\{w;}

k k
+ % Z Z Z Ml",y (:c,y) > 2(4712 — 8) +m Z(n] —
=1 j=2

175] xGBi\{wi} EEE
i#17j7é1 yij\{wj}

= 4(n+k—1)—8k+n1(n—n1):4n—4k—4+n1(n—n1) .

Since ni+no+---+np=n+k—1,n >4, n; >2,for2<i<k,wehavethat 4 <n; <n—k+1,
and 2 < k <n-—3.
If £ > 5, then ny(n —ny) > 4(n — 4). Thus,

dn—4k —4+ni(n—ny) >8n—4k—-20>8n—4(n—3) —20=4n - 8.

Equality holds if and only if ny =4, ng =n3 =--- =n,_3 =2 ie., if By, Bs,..., B,_3 form a tree
T on n — 3 vertices, that shares a single vertex with B .
If2<k<4,thenni(in—mn1)>n—-—k+1)(k-1).
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If k=2, then4n —4k -4+ (n—k+1)(k —1) = 5n — 13 > 4n — 8. Equality holds if and only if
n =5, G is a graph composed of a cycle on 4 vertices and a pendant edge.

If k=3, then 4n — 4k —4+4+ (n — k+ 1)(k — 1) = 6n — 20 > 4n — 8. Equality holds if and only if
n = 6, G is a graph composed of a cycle on 4 vertices and a tree on 3 vertices sharing a single vertex.

If k=4, then 4n —4k —4+ (n —k+1)(k — 1) = Tn — 29 > 4n — 8. Equality holds if and only if
n =7, G is a graph composed of a cycle on 4 vertices and a tree on 4 vertices sharing a single vertex.

By this, the proof of Theorem is completed. O

Remark 2.3. The method used in the proof of Theorem[2.9 is not applicable to non-bipartite graphs.
This is because given a 2-connected non-bipartite graph G, for any two vertices x,y € V(G), if C is

an odd cycle, where C' is defined as in Lemmaﬁ we cannot get > pyy(e) —d(xz,y) > 1. Hence,
e€E(Q)
for non-bipartite graphs we do not have an auziliary result like Lemma (2.1
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