The Hosoya index and the Merrifield-Simmons index of some graphs

Document Type: Research Paper

Authors

1 Tarbiat Modares University

2 Department of Mathematics, Tarbiat Modares University, P. O. Box 14115-137, Tehran

Abstract

‎The Hosoya index and the Merrifield-Simmons index are two types of‎ ‎graph invariants used in mathematical chemistry‎. ‎In this paper‎, ‎we give some formulas to compute these indices for some classes‎ ‎of corona product and link of two graphs‎. ‎Furthermore‎, ‎we obtain‎ ‎exact formulas of Hosoya and Merrifield-Simmons indices for the‎ ‎set of bicyclic graphs‎, ‎caterpillars and dual star‎.

Keywords

Main Subjects


J. A. Bondy and U. S. R. Murty (1976). Graph Theory with Applications. Macmillan Press, New York.
O. Chan, I. Gutman, T. K. Lam and R. Merris (1998). Algebraic connections between topological indices. J. Chem. Inform Comput. Sci.. 38, 62-65
H. Cheng and J. Yang (2012). Hosoya index of the corona of two graphs. South Asian J. Math. 2 (2), 144-147
M. V. Diudea, I. Gutman and L. Jantschi (2001). Molecular Topology. Huntington, NY.
T. Dov{s}li'c (2005). Splices, links, and their degree-weighted Wiener polynomials. Graph Theory Notes New York. 48, 47-55
I. Gutman (1987). Acyclic conjugated molecules, trees and their energies. J. Math. Chem.. 1, 123-144
I. Gutman and O. E. Polansky (1986). Mathematical Concepts in Organic Chemistry. Springer, Berlin.
F. Harary (1969). Graph Theory. Addison–Wesley, Reading, MA.
H. Hosoya (1971). Topological index, a newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Jpn.. 44, 2332-2339
H. Hua (2008). Hosoya index of unicyclic graphs with prescribed pendent vertices. J. Math. Chem.. 43, 831-844
S. Li and Z. Zhu (2009). The number of independent sets in unicyclic graphs with a given diameter. Discrete Appl. Math.. 157, 1387-1395
X. Li, H. Zhao and I. Gutman (2005). On the Merrifield-Simmons index of trees. MATCH Commun. Math. Comput. Chem.. 54, 389-402
X. Lv and A. Yu (2006). The Merrifield-Simmons indices and Hosoya indices of trees with a given maximum degree. MATCH Commun. Math. Comput. Chem.. 56, 605-616
R. E. Merrifield and H. E. Simmons (1989). Topological Methods in Chemistry. Wiley, New York.
H. Prodinger and R. F. Tichy (1982). Fibonacci numbers of graphs. Fibonacci Quart.. 20, 16-21
M. R. Reyhani, S. Alikhani and M. A. Iranmanesh (2012). Hosoya and Merrifield-Simmons indices of some classes of corona of two graphs. Trans. Comb.. 1 (4), 1-7
N. Trinajstic (1992). Chemical graph theory. CRC Press, Boca Raton, FL.
S. G. Wagner (2007). Extremal trees with respect to Hosoya index and Merrifield-Simmons index. MATCH Commun. Math. Comput. Chem.. 57, 221-233
S. Wu, J. Yang and H. Cheng (2012). Merrifield-simmons index of the corona of two graphs. South Asian J. Math. 2 (3), 274-278
K. Xu (2010). On the Hosoya index and the Merrifield-Simmons index of graphs with a given clique number. Appl. Math. Lett.. 23, 395-398
A. Yu and X. Lv (2007). The Merrifield-Simmons indices and Hosoya indices of trees with $k$ pendent vertices. J. Math. Chem.. 41, 33-43
A. Yu and F. Tian (2006). A kind of graphs with minimal Hosoya indices and maximal Merrifield-Simmons indices. MATCH Commun. Math. Comput. Chem.. 55, 103-118