S.~Akbari, F.~Khaghanpoor and S.~Moazzeni Colorful paths in vertex coloring of graphs. Preprint.
S. Akbari, V. Liaghat and A. Nikzad (2011). Colorful paths in vertex coloring of graphs. Electron. J. Combin., Paper 17. 18 (1), 9
M. Alishahi, A. Taherkhani and C. Thomassen (2011). Rainbow paths with prescribed ends. Electron. J. Combin., Paper 86. 18 (1), 0
G.~J. Chang, L. D. Tong, J. H. Yan and H. G. Yeh (2002). A note on the Gallai-Roy-Vitaver theorem. Discrete Math.. 256 (1-2), 441-444
M.~R. Garey and D.~S. Johnson (1979). Computers and intractability: A guide to the theory of $NP$-completeness. A Series of Books in the Mathematical Sciences, W. H. Freeman and Co., San Francisco, Calif..
H. Li (2001). A generalization of the Gallai-Roy theorem. Graphs Combin.. 17 (4), 681-685
C. Lin (2007). Simple proofs of results on paths representing all colors in proper vertex-colorings. Graphs Combin.. 23 (2), 201-203
P.~M. Pardalos and A.~Migdalas (2004). A note on the complexity of longest path problems related to graph
coloring. Appl. Math. Lett.. 17 (1), 13-15
D.~B. West (1996). Introduction to graph theory. Prentice Hall Inc., Upper Saddle River, NJ.