TWO-OUT DEGREE EQUITABLE DOMINATION IN GRAPHS

A. SAHAL∗ AND V. MATHAD

Communicated by Behruz Tayfeh-Rezaie

Abstract. An equitable domination has interesting application in the context of social networks. In a network, nodes with nearly equal capacity may interact with each other in a better way. In the society persons with nearly equal status, tend to be friendly. In this paper, we introduce new variant of equitable domination of a graph. Basic properties and some interesting results have been obtained.

1. Introduction

By a graph $G = (V, E)$ we mean a finite, undirected graph with neither loops nor multiple edges. The order and size of G are denoted by n and m, respectively. For graph theoretic terminology we refer to Chartrand and Lesnaik [2]. Let $G = (V, E)$ be a graph and let $v \in V$. The open neighborhood and the closed neighborhood of v are denoted by $N(v) = \{u \in V : uv \in E\}$ and $N[v] = N(v) \cup \{v\}$, respectively. If $S \subseteq V$ then $N(S) = \bigcup_{v \in S} N(v)$ and $N[S] = N(S) \cup S$. A subset S of V is called a dominating set if $N[S] = V$. The minimum (maximum) cardinality of a minimal dominating set of G is called the domination number (upper domination number) of G and is denoted by $\gamma(G)$ ($\Gamma(G)$). An excellent treatment of the fundamentals of domination is given in the book by Haynes et al. [4]. A survey of several advanced topics in domination is given in the book edited by Haynes et al. [5]. Various types of domination have been defined and studied by several authors and more than 75 models of domination are listed in the appendix of Haynes et al. [4]. A double star is the tree obtained from two disjoint stars $K_{1,n}$ and $K_{1,m}$ by connecting their centers.

MSC(2010): Primary: 05C69; Secondary: 05C70.
Keywords: Equitable Domination Number, Two-Out Degree Equitable Domination Number, Minimal Two-Out Degree Equitable Dominating set, Two-Out Degree Equitable Domatic Partition.
Received: 2 February 2013, Accepted: 10 July 2013.
*Corresponding author.
Definition 1.1. Let $G = (V, E)$ be a graph, $D \subseteq V(G)$ and v be any vertex in D. The out degree of v with respect to D denoted by $od_D(v)$, is defined as $od_D(v) = |N(v) \cap (V - D)|$.

Definition 1.2[1]. Let D be a dominating set of a graph $G = (V, E)$. For $v \in D$, let $od_D(v) = |N(v) \cap (V - D)|$. Then D is called an equitable dominating set of type 1 if $|od_D(v_1) - od_D(v_2)| \leq 1$ for all $v_1, v_2 \in D$. The minimum cardinality of such a dominating set is denoted by $\gamma_{eq1}(G)$ and is called the 1- equitable domination number of G.

In this paper we make the equitable dominating set of a graph.

2. Two-Out Degree Equitable Domination Number in Graphs

Definition 2.1. A dominating set D in a graph G is called a two-out degree equitable dominating set if for any two vertices $u, v \in D$, $|od_D(u) - od_D(v)| \leq 2$. The minimum cardinality of a two-out degree equitable dominating set is called the two-out degree equitable domination number of G, and is denoted by $\gamma_{2oe}(G)$. A subset D of V is a minimal two-out degree equitable dominating set if no proper subset of D is a two-out degree equitable dominating set.

It is obvious that any two-out degree dominating set in a graph G is also a dominating set, and thus we obtain the obvious bound $\gamma(G) \leq \gamma_{2oe}(G)$. Also, it is easy to see that, $\gamma_{2oe}(G) = 1$ if and only if $\gamma(G) = 1$.

The following results are straightforward.

Proposition 2.2.

1. For the complete bipartite graph $K_{n,m}$, $1 < m \leq n$, the two-out degree equitable domination number is:

$$
\gamma_{2oe}(K_{n,m}) = \begin{cases}
2, & \text{if } n - m \leq 2; \\
r, & \text{if } n - m = r, \ 3 \leq r < m; \\
m, & \text{if } n - m = r, \ 3 \leq m \leq r.
\end{cases}
$$

2. For the double star $S_{n,m}$, the two-out degree equitable domination number is:

$$
\gamma_{2oe}(S_{n,m}) = \begin{cases}
2, & \text{if } |n - m| \leq 2; \\
n + m - 1, & \text{if } |n - m| \geq 3, \ n \text{ or } m = 1; \\
n + m - 2, & \text{if } |n - m| \geq 3, \ n, m \geq 2.
\end{cases}
$$

Theorem 2.3. For any connected graph G, if $\Delta - \delta \leq 2$, then $\gamma_{2oe}(G) = \gamma(G)$.

Proof. Let G be a connected graph such that $\Delta - \delta \leq 2$ and let D be a minimum dominating set of G. Then $|D| = \gamma(G)$. Since $\Delta - \delta \leq 2$, it follows that for any two vertices $u, v \in D$, $|od_D(u) - od_D(v)| \leq 2$. Hence $\gamma_{2oe}(G) = \gamma(G)$. □
Theorem 2.4. Let D be a two-out degree equitable dominating set of a graph G. Then D is a minimal two-out degree equitable dominating set of G if and only if one of the following holds:

1. D is minimal dominating set.
2. For any vertex $v \in D$, the set U_v is nonempty, where $U_v = \{x, y \in D, |\text{od}_D(x) - \text{od}_D(y)| = 2, v \in D\}$, and v is adjacent to x but not adjacent to y.

Proof. Suppose that D is a minimal two-out degree equitable dominating set of G. Then for any $v \in D$, $D - \{v\}$ is not two-out degree equitable dominating set. If D is a minimal dominating set, then we are done. If not, then for any $v \in D$, let $U_v = \{x, y \in D, |\text{od}_D(x) - \text{od}_D(y)| = 2, v \in D\}$, and v is adjacent to x but not adjacent to y. Then for any $x, y \in D - \{v\}$ such that $|\text{od}_{D - \{v\}}(x) - \text{od}_{D - \{v\}}(y)| > 2$. If both x, y are adjacent to v, then $|\text{od}_{D - \{v\}}(x) - \text{od}_{D - \{v\}}(y)| = |\text{od}_D(x) - \text{od}_D(y)| < 2$, a contradiction. If both x, y are not adjacent to v, then $|\text{od}_{D - \{v\}}(x) - \text{od}_{D - \{v\}}(y)| = |\text{od}_D(x) - \text{od}_D(y)| \leq 2$, a contradiction. So, v is adjacent to precisely one vertex of $\{x, y\}$. Without loss of generality, assume that v is adjacent to x and v not adjacent to y.

Then,

$$2 < |\text{od}_{D - \{v\}}(x) - \text{od}_{D - \{v\}}(y)| = |\text{od}_D(x) + 1 - \text{od}_D(y)| \leq |\text{od}_D(x) - \text{od}_D(y)| + 1$$

So, $|\text{od}_D(x) - \text{od}_D(y)| > 1$. But $|\text{od}_D(x) - \text{od}_D(y)| \leq 2$.

So, $|\text{od}_D(x) - \text{od}_D(y)| = 2$. Hence U_v is not empty.

Conversely, let D be a two-out degree equitable dominating set and suppose that D is a minimal two-out degree equitable dominating set. Suppose to the contrary D is not a minimal two-out degree equitable dominating set. Then for every $v \in D$, $D - \{v\}$ is a two-out degree equitable dominating set. So, D is not a minimal dominating set, a contradiction. Next, suppose that D is a two-out degree equitable dominating set and (2) holds. Then for every $v \in D$, U_v is not empty. So, for every $v \in D$, there exist $x, y \in D$ such that v is adjacent to precisely one vertex of $\{x, y\}$, and $|\text{od}_D(x) - \text{od}_D(y)| = 2$.

Suppose to the contrary D is not a minimal two-out degree equitable dominating set. Then for every $v \in D$, $D - \{v\}$ is a two-out degree equitable dominating set. So, $2 < |\text{od}_{D - \{v\}}(x) - \text{od}_{D - \{v\}}(y)| \leq 2$ and thus

$$2 \geq |\text{od}_{D - \{v\}}(x) - \text{od}_{D - \{v\}}(y)| = |\text{od}_D(x) - \text{od}_D(y)| \leq |\text{od}_D(x) - \text{od}_D(y)| + 1 = 3$$

Since $D - \{v\}$ is a two-out degree equitable dominating set, we have $|\text{od}_{D - \{v\}}(x) - \text{od}_{D - \{v\}}(y)| = 2$. Then $|\text{od}_{D - \{v\}}(x) - \text{od}_{D - \{v\}}(y)| = |\text{od}_D(x) - \text{od}_D(y)|$, either $\{x, y\} \subseteq N(v)$, or $\{x, y\} \cap N(v) = \phi$. □

Theorem 2.5. Let G be a graph. Then G has a unique minimal two-out degree equitable dominating set if and only if $G = \overline{K}_n$.

Proof. Suppose that D is a unique minimal two-out degree equitable dominating set of G. Suppose $G \neq \overline{K}_n$, then there exists $u \in D$ such that $\text{deg}(u) \geq 1$. Then $V - \{u\}$ is a two-out degree equitable dominating set of G. Hence there exists $D' \subseteq V - \{u\}$ such that D' is a minimal two-out degree equitable dominating set. Since $u \notin D'$, $D \neq D'$. Hence G has two minimal two-out degree equitable
dominating sets, a contradiction. Thus $G = K_n$ and $V(G)$ is the only two-out degree equitable dominating set of G. \hfill \Box$

Theorem 2.6. Let G be a graph of order n. Let $u, v \in V(G)$ such that $N(u) \neq \emptyset$, $N(v) \neq \emptyset$ and $N[u] \cap N[v] = \emptyset$. Then $\gamma_{2oe}(G) \leq n - 2$.

Proof. Let $D = V - \{u, v\}$. Since $N[u] \cap N[v] = \emptyset$, u and v are not adjacent vertices. Since u and v are not isolated, there exist two distinct vertices $x, y \in D$ such that x is adjacent to u but not adjacent to v and y is adjacent to v but not adjacent to u. Clearly the out degree of any vertex of D is either 0 or 1. Hence D is a two-out degree equitable dominating set of G. Thus $\gamma_{2oe}(G) \leq n - 2$. \hfill \Box

Lemma 2.7. Let $G = (V, E)$ be a connected graph and let $D = \{u, v\}$ be a subset of V such that $N(u) \cap N(v) = \emptyset$ and $|\text{od}_D(u) - \text{od}_D(v)| \leq 2$. Then $\gamma_{2oe}(\overline{G}) = 2$.

Proof. Let $D = \{u, v\}$ and let x be any vertex of $V - D$. Since $u, v \in V(G)$ such that $N(u) \cap N(v) = \emptyset$, we consider the following cases.

Case 1: x is adjacent to precisely one vertex of $\{u, v\}$ in G. Then x is adjacent to precisely one vertex of $\{u, v\}$ in \overline{G} also.

Case 2: x is not adjacent to both u and v in G. Then x is adjacent to both u and v in \overline{G}.

Since G is connected, it follows from the above two cases that $\{u, v\}$ is a dominating set of \overline{G} and $|\text{od}_D(u) - \text{od}_D(v)| \leq 2$ of \overline{G}. Hence there is no vertex with full degree and hence $\{u, v\}$ is a minimum two-out degree equitable dominating set. Thus $\gamma_{2oe}(\overline{G}) = 2$. \hfill \Box

Theorem 2.8. Let $G = (V, E)$ be a connected graph, let u and v be any two vertices of $V(G)$ such that $N(u) \cap N(v) = \emptyset$ and $|\text{deg}(u) - \text{deg}(v)| \leq 2$. Then

1. $\gamma_{2oe}(G) + \gamma_{2oe}(\overline{G}) \leq n$.
2. $\gamma_{2oe}(G)\gamma_{2oe}(\overline{G}) \leq 2(n - 2)$.

Proof. Let $G = (V, E)$ be a connected graph. By Lemma 2.7, $\gamma_{2oe}(\overline{G}) = 2$ and by Theorem 2.6, $\gamma_{2oe}(G) \leq n - 2$. Hence $\gamma_{2oe}(G) + \gamma_{2oe}(\overline{G}) \leq n$ and $\gamma_{2oe}(G)\gamma_{2oe}(\overline{G}) \leq 2(n - 2)$. \hfill \Box

Theorem 2.9. Let G be an isolate-free graph of order n and let D be a maximum independent set of G such that for $u \in V - D$, $|N(u) \cap D| \leq 2$. Then $\gamma_{2oe}(G) \leq n - \beta$.

Proof. Let G be an isolate-free graph of order n. Since D is the maximum independent set of G, $V - D$ is dominating set of G. Then for any $u, v \in V - D$, $|\text{od}_{V - D}(u) - \text{od}_{V - D}(v)| \leq 2$. Hence $V - D$ is a two-out degree equitable dominating set of G. Thus $\gamma_{2oe}(G) \leq |V - D| \leq n - |D| \leq n - \beta$. \hfill \Box

Theorem 2.10. For any graph G of order n and size m, $\gamma_{2oe}(G) = n - m$ if and only if $G = \bigcup_{i=1}^{t} K_{n_i,r_i}$ such that $|r_i - r_j| \leq 2$, $1 \leq i, j \leq \gamma_{2oe}(G)$.

Proof. Let $\gamma_{2oe}(G) = n - m$. Suppose that G has t-components. The minimum number of edges in each component is $n_i - 1$, where n_i is the number of vertices in that component. Since any dominating set of G has at least one vertex from each component of G, $t \leq \gamma_{2oe}(G)$. But $m \geq n_1 - 1 + n_2 - 1 + \cdots + n_t - 1$.\hfill \Box
So, \(m \geq n - t \). Hence \(t \geq \gamma_{2oe}(G) \). Thus \(t = \gamma_{2oe}(G) \). If \(G \) is not a forest, then \(G \) contains a component \(G_1 \), say which is cyclic. Then \(m \geq n \), so that \(\gamma_{2oe}(G) \leq 0 \) which is not possible. Hence \(G \) is a forest. Since \(t = \gamma_{2oe}(G) \), it follows that each component is a star. That is \(G = \bigcup_{i=1}^{j} K_{1,r_i} \). Since the centers of the stars constitute a minimum two-out degree equitable dominating set, it follows that if \(G_i = K_{1,r_i} \) and \(G_j = K_{1,r_j} \), then \(|r_i - r_j| \leq 2 \).

Theorem 2.11. For any positive integer \(m \), there exists a graph \(G \) such that \(\gamma_{2oe}(G) = \left\lfloor \frac{n}{\Delta + 1} \right\rfloor = m \), where \(\lfloor x \rfloor \) denotes the greatest integer not exceeding \(x \).

Proof. For \(m = 1 \), take \(G = K_{4,4} \), \(\gamma_{2oe}(G) = \left\lfloor \frac{n}{\Delta + 1} \right\rfloor = 2 - 1 = 1 \).

For \(m = 2 \), take \(G = K_{3,6} \), \(\gamma_{2oe}(G) = \left\lfloor \frac{n}{\Delta + 1} \right\rfloor = 3 - 1 = 2 \).

For \(m \geq 3 \), take \(G = S_{r,s} \), where \(r + s = m + 3 \), \(s \geq r + 3 \)

\[
\gamma_{2oe}(G) = r + s - 2 = m + 1,
\]

\[
\lfloor \frac{n}{\Delta + 1} \rfloor = \left\lfloor \frac{r+s+2}{r+s+2} \right\rfloor = 1,
\]

\[
\gamma_{2oe}(G) = \left\lfloor \frac{n}{\Delta + 1} \right\rfloor = r + s - 3 = m.
\]

Theorem 2.12. Let \(G \) be a graph of order \(n \) having \(p_0 \) isolated vertices. Then \(\gamma_{2oe}(G) \geq \frac{n + 2p_0}{3} \).

Proof. Let \(D \) be any minimum two-out degree equitable dominating set of \(G \). Then for any \(v \in D \), \(v \) is dominating at most two vertices of \(V - D \). Let \(|D'| = |D| - p_0 \). Then \(2|D'| \geq |V - D| \). It follows that, \(2|D'| + |D| \geq n \). Then \(\gamma_{2oe}(G) \geq \frac{n + 2p_0}{3} \).

The bound is sharp for \(\overline{K_n} \).

Theorem 2.13. Let \(G \) be a graph and let \(D \) be a minimum two-out degree equitable dominating set of \(G \) containing \(t \) pendant vertices such that every vertex of \(V - D \) is a pendant vertex. Then \(\gamma_{2oe}(G) \geq \frac{n + t}{3} \).

Proof. Let \(D \) be any minimum two-out degree equitable dominating set of \(G \) containing \(t \) pendant vertices such that every vertex \(v \in V - D \) is a pendant vertex. Then \(2|D| - t \geq |V - D| \). It follows that, \(3|D| - t \geq n \). Hence \(\gamma_{2oe}(G) \geq \frac{n + t}{3} \).

The bound is sharp for \(lK_2, l \geq 1 \).

Theorem 2.14. Let \(G \) be a graph, and \(u, v, w \in V(G) \) such that \(u, v, w \) are not isolates and \((uv, vw, uw) \notin E(G)\). Then \(V - \{u, v, w\} \) is a two-out degree equitable dominating set if and only if one of the following conditions hold:

1. \(N(u) \cap N(v) \cap N(w) = \phi \).
2. \(N(u) \cap N(v) \cap N(w) \neq \phi \) and \(N[u] \cup N[v] \cup N[w] = V \).

Proof. Let \(D = V - \{u, v, w\} \). Suppose one of the conditions (1),(2) holds. Since \(u, v, w \) are not isolates and \((uv, vw, uw) \notin E(G)\), then \(D \) is a dominating set. If (1) holds, then any vertex \(x \in D \) is adjacent to at most two of \(u, v, w \), such that the out degree of \(x \) is at most two. Hence \(D \) is a two-out degree equitable dominating set. If (2) holds, then there exists \(x \in N(u) \cap N(v) \cap N(w) \) such that
It follows that \(\text{od}_D(x) \leq 3 \). Since \(N[u] \cup N[v] \cup N[w] = V \), \(\text{od}_D(y) \geq 1 \), for each \(y \in D \). Hence \(D \) is a two-out degree equitable dominating set.

Conversely, suppose \(D = V - \{u, v, w\} \) is a two-out degree equitable dominating set. If (1) hold, then we are done. If not then there exists \(x \in N(u) \cap N(v) \cap N(w) \). i.e, \(x \in D \), and \(\text{od}_D(x) = 3 \). Since \(D \) is a two-out degree equitable dominating set, then for any \(y \in D \), \(1 \leq \text{od}_D(y) \leq 3 \).

Hence \(N(u) \cap N(v) \cap N(w) \neq \emptyset \) and \(N[u] \cup N[v] \cup N[w] = V \). \(\square \)

3. Two-Out Degree Equitable Domatic Number in Graphs

Definition 3.1. A partition \(P = \{V_1, V_2, \ldots, V_l\} \) of \(V(G) \) is called a two-out degree equitable domatic partition if \(V_i \) is a two-out degree equitable dominating set for every \(1 \leq i \leq l \).

Example:

\[
\begin{array}{c}
1 & 2 \\
3 & 4 \\
\end{array}
\]

Figure 1

\(\{1, 2\}, \{3, 4\} \) is a two-out degree equitable domatic partition of \(G \).

Definition 3.2. The two-out degree equitable domatic number of \(G \) is the maximum cardinality of a two-out degree equitable domatic partition of \(G \) and is denoted by \(d_{2oe}(G) \).

We now proceed to compute \(d_{2oe}(G) \) for some standard graphs. It can be easily verified that

1. For the complete graph \(K_n \), \(d_{2oe}(K_n) = n \).
2. For the cycle \(C_n \), \(n \geq 4 \), \(d_{2oe}(C_n) = 2 \).
3. For the path \(P_n \), \(d_{2oe}(P_n) = 2 \).
4. For the star \(K_{1,n} \), \(d_{2oe}(K_{1,n}) = 2 \).
5. For the wheel \(W_n \) with \(n \) vertices, \(d_{2oe}(W_n) = 2 \).
6. For the complete bipartite graph \(K_{n,m} \), \(m \leq n \) we have

\[
d_{2oe}(K_{n,m}) = \begin{cases}
m, & \text{if } n - m \leq 2, \ n, m \geq 2; \\
2, & \text{otherwise.} \\
\end{cases}
\]

Theorem 3.3. For any graph \(G \), \(d_{2oe}(G) \leq \delta(G) + 1 \).
Proof. Let D be any two-out degree equitable dominating set of G. Then for any $v \in V(G)$, $D \cap N[v] \neq \emptyset$. Let $v \in V(G)$ such that $\text{deg}(v) = \delta(G)$ and $N[v] = \{v, u_1, u_2, \ldots, u_\delta\}$. If $d_{2\text{oe}}(G) > \delta(G) + 1$, then there exist at least $(\delta(G) + 2)$ sets of a two-out degree equitable domatic partition of G, each containing at least one element of $N[v]$. Then $\text{deg}(v) \geq \delta(G) + 1$, a contradiction. Hence $d_{2\text{oe}}(G) \leq \delta(G) + 1$. □

Theorem 3.4. For any graph G of order n, $d_{2\text{oe}}(G) \leq \frac{n}{\gamma_{2\text{oe}}(G)}$.

Proof. Suppose that $d_{2\text{oe}}(G) = t$, for some positive integer t. Let $P = \{D_1, D_2, \ldots, D_t\}$ be the two-out degree equitable domatic partition of G. Obviously, $|V(G)| = \sum_{i=1}^{t} |D_i|$ and from definition of the two-out degree equitable domination number $\gamma_{2\text{oe}}(G)$, we have $\gamma_{2\text{oe}}(G) \leq |D_i|, i = 1, 2, \ldots, t$. Hence $n = \sum_{i=1}^{t} |D_i| \geq t \gamma_{2\text{oe}}(G)$. Thus $d_{2\text{oe}}(G) \leq \frac{n}{\gamma_{2\text{oe}}(G)}$. □

4. Conclusion

We can generalize the concept of a two-out degree equitable domination as follows: Let $G = (V, E)$ be a graph with dominating set D, then D is called a k-out degree equitable dominating set if for any two vertices u and v in D, $|\text{od}_D(u) - \text{od}_D(v)| \leq k$. The similar results can be obtained from the two-out degree equitable domination.

Acknowledgments

The authors would like to thank and express their gratitude to the referee for reading the paper carefully and giving valuable comments.

REFERENCES

Ali Sahal
Department of Mathematics, University of Mysore, Manasagangotri, Mysore - 570 006, India
Email: alisahl1980@gmail.com

Veena Mathad
Department of Mathematics, University of Mysore, Manasagangotri, Mysore - 570 006, India
Email: veena_mathad@rediffmail.com