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BOUNDING THE RAINBOW DOMINATION NUMBER OF A TREE IN TERMS
OF ITS ANNIHILATION NUMBER

N. DEHGARDI, S. M. SHEIKHOLESLAMI∗ AND A. KHODKAR

Communicated by Hamidreza Maimani

Abstract. A 2-rainbow dominating function (2RDF) of a graph G is a function f from the vertex set

V (G) to the set of all subsets of the set {1, 2} such that for any vertex v ∈ V (G) with f(v) = ∅ the

condition
⋃

u∈N(v) f(u) = {1, 2} is fulfilled, where N(v) is the open neighborhood of v. The weight of a

2RDF f is the value ω(f) =
∑

v∈V |f(v)|. The 2-rainbow domination number of a graph G, denoted by

γr2(G), is the minimum weight of a 2RDF of G. The annihilation number a(G) is the largest integer k

such that the sum of the first k terms of the non-decreasing degree sequence of G is at most the number

of edges in G. In this paper, we prove that for any tree T with at least two vertices, γr2(T ) ≤ a(T )+1.

1. Introduction

In this paper, G is a simple graph with vertex set V = V (G) and edge set E = E(G). The order |V |
of G is denoted by n = n(G). For every vertex v ∈ V (G), the open neighborhood NG(v) = N(v) is the

set {u ∈ V (G) | uv ∈ E(G)} and the closed neighborhood of v is the set NG[v] = N [v] = N(v) ∪ {v}.
The degree of a vertex v ∈ V is degG(v) = deg(v) = |N(v)|. The minimum and maximum degree of a

graph G are denoted by δ = δ(G) and ∆ = ∆(G), respectively. The open neighborhood of a set S ⊆ V
is the set N(S) =

⋃
v∈S N(v), and the closed neighborhood of S is the set N [S] = N(S)∪ S. We write

Pn for a path of order n. For a subset S ⊆ V (G), we let∑
(S,G) =

∑
v∈S

degG(v).
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A leaf of a tree T is a vertex of degree 1, a support vertex is a vertex adjacent to a leaf and a strong

support vertex is a vertex adjacent to at least two leaves. For r, s ≥ 1, a double star S(r, s) is a tree

with exactly two vertices that are not leaves, with one adjacent to r leaves and the other to s leaves.

For a vertex v in a rooted tree T , let C(v) denote the set of children of v. Let D(v) denote the set

of descendants of v and D[v] = D(v) ∪ {v}. The maximal subtree at v is the subtree of T induced by

D[v], and is denoted by Tv.

For a positive integer k, a k-rainbow dominating function (kRDF) of a graph G is a function f from

the vertex set V (G) to the set of all subsets of the set {1, 2, . . . , k} such that for any vertex v ∈ V (G)

with f(v) = ∅ the condition
⋃

u∈N(v) f(u) = {1, 2, . . . , k} is fulfilled. The weight of a kRDF f is the

value ω(f) =
∑

v∈V |f(v)|. The k-rainbow domination number of a graph G, denoted by γrk(G), is the

minimum weight of a kRDF of G. A γrk(G)-function is a k-rainbow dominating function of G with

weight γrk(G). Note that γr1(G) is the classical domination number γ(G). The k-rainbow domination

number was introduced by Brešar, Henning, and Rall [2] and has been studied by several authors (see

for example [3, 4, 5, 8, 11, 12, 13]).

Let d1, d2, . . . , dn be the degree sequence of a graph G arranged in non-decreasing order, and so

d1 ≤ d2 ≤ . . . ≤ dn. Pepper [9] defined the annihilation number of G, denoted a(G), to be the largest

integer k such that the sum of the first k terms of the degree sequence is at most half the sum of the

degrees in the sequence. Equivalently, the annihilation number is the largest integer k such that
k∑

i=1

di ≤
n∑

i=k+1

di.

We observe that if G has m edges and annihilation number k, then
∑k

i=1 di ≤ m.

The relation between annihilation number and independence number and some domination param-

eters have been studied by several authors (see for example [1, 6, 7, 10]).

Our purpose in this paper is to establish an upper bound on the 2-rainbow domination number

of a tree in terms of its annihilation number. We prove that for any tree T with at least 2 vertices,

γr2(T ) ≤ a(T ) + 1. The following results show that for a path Pn with at least two vertices, γr2(Pn) ≤
a(Pn) + 1.

Proposition A. ([3]) For n ≥ 1,

γr2(Pn) =
⌊n

2

⌋
+ 1.

Proposition B. For n ≥ 2,

a(Pn) =
⌈n

2

⌉
.

Corollary 1.1. For n ≥ 2, γr2(Pn) ≤ a(Pn) + 1.

2. Main result

A subdivision of an edge uv is obtained by replacing the edge uv with a path uwv, where w is a

new vertex. The subdivision graph S(G) is the graph obtained from G by subdividing each edge of G.
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The subdivision star S(K1,t) for t ≥ 2, is called a healthy spider St. A wounded spider St is the graph

formed by subdividing at most t− 1 of the edges of a star K1,t for t ≥ 2. Note that stars are wounded

spiders. A spider is a healthy or wounded spider.

Lemma 2.1. If T is a spider, then γr2(T ) ≤ a(T ) + 1 with equality if and only if T = P4.

Proof. First let T = St be a healthy spider for some t ≥ 2. Then obviously γr2(T ) = t + 1 and

a(T ) = t+ b t
2c and hence γr2(T ) ≤ a(T ).

Now let T be a wounded spider obtained from K1,t (t ≥ 2) by subdividing 0 ≤ s ≤ t − 1 edges. If

(t, s) = (1, 2), then T = P4, γr2(T ) = 3 and a(T ) = 2, hence γr2(T ) = a(T ) + 1. If s = 0, then T is a

star and we have γr2(T ) = 2 and a(T ) = t. Hence γr2(T ) ≤ a(T ). Suppose s > 0. Then γr2(T ) = 2+s

and a(T ) = t+ b s
2c. It follows that γr2(T ) ≤ a(T ) if (t, s) 6= (2, 1) and the proof is complete. �

Observation 2.2. Let T be a tree. If there is a path x3x2x1 in T with deg(x2) = 2 and deg(x1) = 1,

then T has a γr2(T )-function f such that |f(x1)| = 1, |f(x3)| ≥ 1 and f(x1) 6= f(x3).

Proof. Suppose g is a γr2(T )-function. Consider three cases.

Case 1. g(x1) = ∅.
Then g(x2) = {1, 2} and the function f : V (G)→ P({1, 2}) defined by f(x1) = {1}, f(x2) = ∅, f(x3) =

g(x3) ∪ {2} and f(x) = g(x) for x ∈ V (T )− {x1, x2, x3} is a γr2(T )-function with desired property.

Case 2. |g(x1)| = 1.

We may assume without loss of generality that g(x1) = {1}. If g(x2) = ∅, then we must have 2 ∈ g(x3)

and the result follows. Let |g(x2)| ≥ 1. Then obviously we may assume that g(x1) 6= g(x2). Now

the function f : V (G) → P({1, 2}) defined by f(x2) = ∅, f(x3) = g(x2) ∪ g(x3) and f(x) = g(x) for

x ∈ V (T )− {x2, x3} is a γr2(T )-function with desired property.

Case 3. g(x1) = {1, 2}.
Then the function f : V (G) → P({1, 2}) defined by f(x3) = {1} ∪ g(x3), f(x1) = {2}, f(x2) = ∅ and

f(x) = g(x) for x ∈ V (T ) − {x1, x2, x3} is a γr2(T )-function with |f(x1)| = 1 and f(x3)| ≥ 1, as

desired. �

Theorem 2.3. If T is a tree of order n ≥ 2, then γr2(T ) ≤ a(T ) + 1, and this bound is sharp.

Proof. The proof is by induction on n. The statement holds for all trees of order n = 2, 3, 4. For the

inductive hypothesis, let n ≥ 5 and suppose that for every nontrivial tree T of order less than n the

result is true. Let T be a tree of order n. We may assume that T is not a path for otherwise the result

follows by Corollary 1.1. If diam(T ) = 2, then T is a star and hence γr2(T ) ≤ a(T ) by Lemma 2.1. If

diam(T ) = 3, then T is a double star S(r, s). In this case, a(T ) = r + s and γr2(T ) ≤ 4. If r + s = 3,

then γr2(T ) = 3 and so γr2(T ) = a(T ). If r + s ≥ 4, then γr2(T ) ≤ 4 and we have γr2(T ) ≤ a(T ).

Hence we may assume that diam(T ) ≥ 4.

In what follows, we will consider trees T ′ formed from T by removing a set of vertices. For such a

tree T ′ of order n′, let d′1, d
′
2, . . . , d

′
n′ be a non-decreasing degree sequence of T ′, and let S′ be a set of

vertices which corresponds to the first a(T ′) terms in the degree sequence of T ′. In fact, if u1, u2, . . . , un′
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are the vertices of T ′ such that deg(ui) = d′i for each 1 ≤ i ≤ n′, then S′ = {u1, u2, . . . , ua(T ′)}. We

denote the size of T ′ by m′. We proceed further with a series of claims that we may assume satisfied

by the tree.

Claim 1. T has no strong support vertex such as u that the graph obtained from T by removing u

and the leaves adjacent to u is connected.

Let T have a strong support vertex u such that the graph obtained from T by removing u and the

leaves adjacent to u is connected. Suppose w is a vertex in T with maximum distance from u. Root

T at w and let v be the parent of u. Assume T ′ = T − Tu. Then every γr2(T ′)-function f , can be

extended to a 2-rainbow dominating function of T by defining f(u) = {1, 2} and f(x) = ∅ for each

leaf x adjacent to u. Hence γr2(T ) ≤ γr2(T ′) + 2. If v 6∈ S′, then
∑

(S′, T ) =
∑

(S′, T ′) and if v ∈ S′,
then

∑
(S′, T ) =

∑
(S′, T ′) + 1. Thus,

∑
(S′, T ) − 1 ≤

∑
(S′, T ′) ≤ m′ ≤ m − 3. Let z1, z2 be two

leaves adjacent to u and assume S = S′ ∪ {z1, z2}. Then
∑

(S, T ) =
∑

(S′, T ) + 2 ≤ m, implying that

a(T ) ≥ a(T ′) + 2. By inductive hypothesis, we obtain

γr2(T ) ≤ γr2(T ′) + 2 ≤ a(T ′) + 3 ≤ a(T ) + 1

as desired. (�)

Let v1v2 . . . vD be a diametral path in T and root T at vD. If diam(T ) = 4, then it follows from

Claim 1 that T is a spider and so γr2(T ) ≤ a(T ) by Lemma 2.1. Assume diam(T ) ≥ 5. It follows from

Claim 1 that Tv3 is a spider.

Claim 2. degT (v3) ≤ 3.

Suppose degT (v3) ≥ 4. Let T ′ = T − {v1, v2}. It is easy to see that T ′ has a γr2(T ′)-function f such

that f(v3) 6= ∅ and hence γr2(T ) ≤ γr2(T ′) + 1. If v3 6∈ S′, then
∑

(S′, T ) =
∑

(S′, T ′) and if v3 ∈ S′,
then

∑
(S′, T ) =

∑
(S′, T ′) + 1. Thus,

∑
(S′, T ) ≤

∑
(S′, T ′) + 1 ≤ m′+ 1 = m−1. Let S = S′∪{v1}.

Then
∑

(S, T ) =
∑

(S′, T ) + degT (v1) ≤ m, implying that a(T ) ≥ |S| = |S′| + 1 = a(T ′) + 1. By

inductive hypothesis, we obtain

γr2(T ) ≤ γr2(T ′) + 1 ≤ a(T ′) + 2 ≤ a(T ) + 1.

Claim 3. degT (v3) = 2.

Assume degT (v3) = 3. First let v3 be adjacent to a support vertex z2 not in {v2, v4}. Suppose

z1 is the leaf adjacent to z2 and let T ′ = T − Tv3 . Then every γr2(T ′)-function can be extended

to a 2RDF of T by assigning {1} to v1, z1, ∅ to v2, z2 and {2} to v3. Thus γr2(T ) ≤ γr2(T ′) + 3.

As above we have
∑

(S′, T ) ≤
∑

(S′, T ′) + 1 ≤ m′ + 1 = m − 4. Let S = S′ ∪ {v1, v2, z1}. Then∑
(S, T ) =

∑
(S′, T )+degT (v1)+degT (v2)+degT (z1) ≤ m. Therefore, a(T ) ≥ |S| = |S′|+3 = a(T ′)+3.

It follows from inductive hypothesis that

γr2(T ) ≤ γr2(T ′) + 3 ≤ (a(T ′) + 1) + 3 ≤ a(T ) + 1.

Now let v3 be adjacent to a leaf w. By Claims 1, 2 and the first part of Claim 3, we consider the

following cases.
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Case 3.1. degT (v4) ≥ 4.

Let T ′ = T − Tv3 . Then every γr2(T ′)-function can be extended to a 2RDF of T by assigning {1} to

v1, ∅ to v2, w and {1, 2} to v3. Hence γr2(T ) ≤ γr2(T ′) + 3. Suppose that v4 6∈ S′. In this case, let

S = S′ ∪ {v1, v2, w}. Then
∑

(S, T ) =
∑

(S′, T ) + degT (v1) + degT (v2) + degT (w) =
∑

(S′, T ′) + 4 ≤
m′ + 4 = m, implying that a(T ) ≥ a(T ′) + 3 and the result follows by inductive hypothesis as above.

Now let v4 ∈ S′. Let S = (S′ − {v4}) ∪ {v1, v2, v3, w}. Then
∑

(S, T ) =
∑

(S′, T ′) − degT ′(v4) +

degT (v1) + degT (v2) + degT (v3) + degT (w) ≤ m. Therefore, a(T ) ≥ |S| = |S′| + 3 = a(T ′) + 3. By

inductive hypothesis, we obtain γr2(T ) ≤ γr2(T ′) + 3 ≤ (a(T ′) + 1) + 3 ≤ a(T ) + 1.

s s s s s ssv1 v2 v3 v4 v5 vD
. . .

s
w

B
B
B
BB

Figure 1. Case 3.1

Case 3.2. degT (v4) = 2.

Let T ′ = T − Tv4 . Then every γr2(T ′)-function can be extended to a 2RDF of T by assigning {1}
to v1, ∅ to v2, v4, w and {1, 2} to v3. Hence γr2(T ) ≤ γr2(T ′) + 3. It is easy to see that

∑
(S′, T ) ≤∑

(S′, T ′) + 1 ≤ m′ + 1 = m − 4. Let S = S′ ∪ {v1, v2, w}. Then
∑

(S, T ) =
∑

(S′, T ) + degT (v1) +

degT (v2) + degT (w) ≤ m, implying that a(T ) ≥ |S| = |S′|+ 3 = a(T ′) + 3. By inductive hypothesis,

we have γr2(T ) ≤ γr2(T ′) + 3 ≤ (a(T ′) + 1) + 3 ≤ (a(T )− 3 + 1) + 3 = a(T ) + 1.

s s s s s ssv1 v2 v3 v4 v5 vD
. . .

s
w

Figure 2. Case 3.2

Case 3.3. degT (v4) = 3 and there exists a path v4w3w2w1 in T such that degT (w3) = degT (w2) = 2,

degT (w1) = 1 and w3 6= v5.

Let T ′ = T − Tv4 . Then every γr2(T ′)-function can be extended to a 2RDF of T by assigning

{1} to w1, w, v3, ∅ to v2, v4, w2 and {2} to v1, w3. Hence γr2(T ) ≤ γr2(T ′) + 5. Clearly
∑

(S′, T ) ≤∑
(S′, T ′)+1 ≤ m′+1 = m−7. Let S = S′∪{v1, v2, w, w1, w2}. Then

∑
(S, T ) =

∑
(S′, T )+degT (v1)+

degT (v2) + degT (w) + degT (w1) + degT (w2) ≤ m which implies that a(T ) ≥ |S| = |S′|+ 5 = a(T ′) + 5.

Now the result follows by inductive hypothesis.
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s s s s s ssv1 v2 v3 v4 v5 vD
. . .

s
w

sss
w3

w2

w1

Figure 3. Case 3.3

Case 3.4. degT (v4) = 3 and there is a path w4w3w2w1 in T such that v4w3 ∈ E(T ), degT (w3) =

3,degT (w2) = 2, degT (w1) = degT (w4) = 1 and w3 6∈ {v3, v5}.
Let T ′ = T − Tv4 . Then every γr2(T ′)-function can be extended to a 2RDF of T by assigning

{1} to w4, w, v3, w1, ∅ to v2, v4, w2 and {2} to v1, w3. Hence γr2(T ) ≤ γr2(T ′) + 6. If v5 6∈ S′, then∑
(S′, T ) =

∑
(S′, T ′) and if v5 ∈ S′, then

∑
(S′, T ) =

∑
(S′, T ′)+1. Thus,

∑
(S′, T ) ≤

∑
(S′, T ′)+1 ≤

m′ + 1 = m − 8. Let S = S′ ∪ {v1, v2, w, w1, w2, w4}. Then
∑

(S, T ) =
∑

(S′, T ) + 8 ≤ m, implying

that a(T ) ≥ |S| = |S′| + 6 = a(T ′) + 6. By inductive hypothesis, we have γr2(T ) ≤ γr2(T ′) + 6 ≤
(a(T ′) + 1) + 6 ≤ a(T ) + 1.

s s s s s ssv1 v2 v3 v4 v5 vD
. . .

s
w

sss
w3

w2

w1

b
bbsw4

Figure 4. Case 3.4

Case 3.5. degT (v4) = 3 and v4 is adjacent to a leaf, say w′.

Let T ′ = T − Tv4 . Then every γr2(T ′)-function can be extended to a 2RDF of T by assigning {1}
to v1, w

′, w, ∅ to v2, v4 and {2} to v3. Hence γr2(T ) ≤ γr2(T ′) + 4. As above, we have
∑

(S′, T ) ≤∑
(S′, T ′) + 1 ≤ m′+ 1 = m− 5. Let S = S′ ∪ {v1, v2, w, w′}. Then

∑
(S, T ) =

∑
(S′, T ) + degT (v1) +

degT (v2) + degT (w) + degT (w′) ≤ m. Therefore, a(T ) ≥ |S| = |S′| + 4 = a(T ′) + 4 and the result

follows by inductive hypothesis.

s s s s s ssv1 v2 v3 v4 v5 vD
. . .

sw

sw′

Figure 5. Case 3.5
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Case 3.6. degT (v4) = 3 and v4 is adjacent to a support vertex of degree 2, say w2, other than v5.

Let w1 be the leaf adjacent to w2. We need to consider the following subcases.

s s s s s ssv1 v2 v3 v4 v5 vD
. . .

sw

w2s
sw1

Figure 6. Case 3.6

Subcase 3.6.1 degT (v5) ≥ 4.

Let T ′ = T − Tv4 . Then every γr2(T ′)-function can be extended to a 2RDF of T by assigning {1} to

w, v1, w1, w2, ∅ to v2, v4 and {2} to v3 . Hence γr2(T ) ≤ γr2(T ′) + 5. Suppose that v5 6∈ S′. Then∑
(S′, T ) =

∑
(S′, T ′). In this case, let S = S′ ∪ {w, v1, v2, w1, w2}. Then

∑
(S, T ) =

∑
(S′, T ) +

degT (w) + degT (v1) + degT (v2) + degT (w1) + degT (w2) =
∑

(S′, T ′) + 7 ≤ m′ + 7 = m, implying that

a(T ) ≥ a(T ′) + 5 and the result follows by inductive hypothesis.

Now let v5 ∈ S′. Suppose S = (S′ − {v5}) ∪ {w, v1, v2, v3, w1, w2}. Then
∑

(S, T ) =
∑

(S′, T ′) −
degT ′(v5) + degT (w) + degT (v1) + degT (v2) + degT (v3) + degT (w1) + degT (w2) ≤ m. Therefore,

a(T ) ≥ |S| = |S′| + 5 = a(T ′) + 5. By inductive hypothesis, we obtain γr2(T ) ≤ γr2(T ′) + 5 ≤
(a(T ′) + 1) + 5 ≤ a(T ) + 1.

s s s s s ssv1 v2 v3 v4 v5 vD
. . .

sw

w2s
sw1

�
�
��

C
C
CC

Figure 7. Subcase 3.6.1

Subcase 3.6.2 degT (v5) = 2.

Assume T ′ = T−(Tv3∪Tw2). Since degT (v5) = 2, there is a γr2(T ′)-function, say f , so that |f(v4)| = 1

by Observation 2.2. We may assume without loss of generality that f(v4) = {1}. Now f can be

extended to a 2RDF of T by assigning {1} to v1, v2, ∅ to v3, w2 and {2} to w,w1. Hence γr2(T ) ≤
γr2(T ′) + 4. As above, we have

∑
(S′, T ) ≤

∑
(S′, T ′) + 1. If v4 6∈ S′, then let S = S′ ∪ {v1, w1, w, v2}

and if v5 ∈ S′, then let S = (S′ − {v4}) ∪ {v1, v2, w, w1, w2}. It is easy to see that
∑

(S, T ) ≤ m and

hence a(T ) ≥ |S| = |S′|+ 4 = a(T ′) + 4. Now the result follows by inductive hypothesis.

Subcase 3.6.3 degT (v5) = 3 and there is a path v5z4z3z2z1 in T such that degT (z4) = degT (z3) =

degT (z2) = 2, degT (z1) = 1 and z4 6= v6.
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s s s s s ssv1 v2 v3 v4 v5 vD
. . .

sw

w2s
sw1

Figure 8. Subcase 3.6.2

Let T ′ = T−{z1, z2}. By Observation 2.2, T ′ has a γr2(T ′)-function such as f that |f(z3)| = 1. We may

assume without loss of generality that f(z3) = {1}. Now f can be extended to a 2RDF of T by assigning

{2} to z1 and ∅ to z2. Hence γr2(T ) ≤ γr2(T ′) + 1. As above, we have
∑

(S′, T ) ≤
∑

(S′, T ′) + 1.

Let S = S′ ∪ {z1}. Clearly
∑

(S, T ) ≤ m and hence a(T ) ≥ |S| = |S′|+ 1 = a(T ′) + 1 and the result

follows by inductive hypothesis.

s s s s s ssv1 v2 v3 v4 v5 vD
. . .

sw

w2s
sw1

ssss
z4
z3
z2

z1

Figure 9. Subcase 3.6.3

Subcase 3.6.4 degT (v5) = 3 and there is a path v5v
′
4v
′
3v
′
2v
′
1 in T such that Tv′4

' Tv4 .

Let T ′ = T −Tv5 . It is easy to see that γr2(T ) ≤ γr2(T ′) + 10 and a(T ) ≥ a(T ′) + 10. Hence the result

follows by inductive hypothesis.

s s s s s ssv1 v2 v3 v4 v5 vD
. . .

sw

w2s
sw1

sv′1sv′2sv′3s
v′4

s ss
w′1 w′2

w′

Figure 10. Subcase 3.6.4

Subcase 3.6.5 degT (v5) = 3 and there is a path v5z3z2z1 in T such that degT (z3) = degT (z2) = 2,

degT (z1) = 1 and z3 6= v6.
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Let T ′ = T − Tv5 . Then every γr2(T ′)-function can be extended to a 2RDF of T by assigning

{1} to z1, v4, v3, ∅ to v2, v5, z2, w2 and {2} to v1, w1, w, z3. Thus γr2(T ) ≤ γr2(T ′) + 7. Clearly∑
(S′, T ) ≤

∑
(S′, T ′) + 1. Let S = S′ ∪ {w,w1, v1, z1, v2, z2, z3}. Then

∑
(S, T ) =

∑
(S′, T ) +

degT (v1) + degT (v2) + degT (w) + degT (w1) + degT (z1) + degT (z2) + degT (z3) ≤ m, implying that

a(T ) ≥ |S| = |S′| + 7 = a(T ′) + 7. It follows from inductive hypothesis that γr2(T ) ≤ γr2(T ′) + 7 ≤
(a(T ′) + 1) + 7 ≤ a(T ) + 1.
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Figure 11. Subcase 3.6.5

Subcase 3.6.6 degT (v5) = 3 and there is a path v5z3z2z1 in T such that all neighbors of z3, except

v5 and z2, are leaves, degT (z1) = 1, degT (z3) ≥ 3, degT (z2) = 2 and z3 6= v6.

Assume T ′ = T − Tv5 . Then every γr2(T ′)-function can be extended to a 2RDF of T by assigning

{1, 2} to z3, {1} to z1, v1, v2, v4, ∅ to v3, v5, z2, w2 and every leaves at z3 and {2} to w,w1. Thus

γr2(T ) ≤ γr2(T ′) + 8. Clearly
∑

(S′, T ) ≤
∑

(S′, T ′) + 1. Let z4 be a leaf adjacent to z3 and let

S = S′ ∪ {w,w1, v1, z1, z4, v2, w2, z2}. Then
∑

(S, T ) ≤ m and so a(T ) ≥ |S| = |S′|+ 8 = a(T ′) + 8. It

follows from inductive hypothesis that γr2(T ) ≤ γr2(T ′) + 8 ≤ (a(T ′) + 1) + 8 ≤ a(T ) + 1.
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Figure 12. Subcase 3.6.6

Subcase 3.6.7 degT (v5) = 3 and v5 is adjacent to the center, say z 6= v6, of a spider different from

P4.

Let T ′ = T −Tz. Using an argument similar to that described in the proof of Lemma 2.1 and applying

inductive hypothesis show that γr2(T ) ≤ a(T ) + 1.

Subcase 3.6.8 degT (v5) = 3 and v5 is adjacent to a support vertex of degree 2, say z2.

Let z1 be the leaf adjacent to z2 and let T ′ = T −{v1, w, w1}. Considering the paths v5z2z1 and v4v3v2
in T ′, it follows from Observation 2.2 that T ′ has a γr2(T ′)-function f such that |f(v5)| = |f(v4)| ≥ 1.
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Figure 13. Subcase 3.6.7

Since also |f(w2)| + |f(v4)| + |f(v3)| + |f(v2)| ≥ 3, we may assume without loss of generality that

f(v4) = {1}, f(v3) = ∅, f(w2) = f(v2) = {2}. Now the function g : V (T ) → P({1, 2}) defined by

g(w1) = {2}, g(v1) = g(w) = {1}, g(w2) = ∅ and g(x) = f(x) if x ∈ V (T )− {v1, w, w1, w2} is a 2RDF

of T , implying that γr2(T ) ≤ γr2(T ′)+2. If |S′∩{v2, v3, w2}| ≤ 1, then
∑

(S′, T ) ≤
∑

(S′, T ′)+1. In this

case, let S = S′∪{v1, w}. Then
∑

(S, T ) ≤ m implying that a(T ) ≥ a(T ′)+2. Let |S′∩{v2, v3, w2}| ≥ 2.

If v3 ∈ S′, then let S = (S′ − {v3}) ∪ {v1, w, w1}. Obviously
∑

(S, T ) ≤ m and so a(T ) ≥ a(T ′) + 2.

If v3 6∈ S′, then let S = (S′ − {v2}) ∪ {v1, w, w1}. Then
∑

(S, T ) ≤ m and so a(T ) ≥ a(T ′) + 2. Thus,

in all cases a(T ) ≥ a(T ′) + 2 and the result follows by inductive hypothesis.

s s s s s ssv1 v2 v3 v4 v5 vD
. . .

sw

w2s
sw1

s
s
z2

z1

Figure 14. Subcase 3.6.8

Subcase 3.6.9 degT (v5) = 3 and v5 is adjacent to a leaf z.

If diam(T ) = 5, then clearly γr2(T ) = a(T ) = 7 and the result is true. Let diam(T ) ≥ 6. Let

T ′ = T − Tv5 . Then every γr2(T ′)-function can be extended to a 2RDF of T by assigning {1} to

w,w1, z, v1, v2 and ∅ to w2, v5, v3 and {2} to v4. Thus γr2(T ) ≤ γr2(T ′) + 6. Clearly
∑

(S′, T ) ≤∑
(S′, T ′) + 1. Let S = S′ ∪ {v1, v2, w1, w2, w, z}. Then

∑
(S, T ) =

∑
(S′, T ) + degT (v1) + degT (v2) +

degT (w1) + degT (w2) + degT (w) + degT (z) ≤ m, implying that a(T ) ≥ a(T ′) + 6. Now the result

follows from inductive hypothesis. (�)

s s s s s ssv1 v2 v3 v4 v5 vD
. . .

sw

w2s
sw1 s z

Figure 15. Subcase 3.6.9
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We now return to the proof of Theorem. Note that by Claim 1 we may assume degT (v2) = 2 and

by Claim 3 we have degT (v3) = 2. First let degT (v4) = 2. Assume T ′ = T − Tv2 . By Observation 2.2,

there is a γr2(T ′)-function f such that |f(v3)| = 1. Suppose without loss of generality that f(v3) = {1}.
Now f can be extended to a 2RDF of T by assigning ∅ to v2 and {2} to v1. Thus γr2(T ) ≤ γR(T ′) + 1.

Let S = S′ ∪ {v1}. Then
∑

(S, T ) ≤ m, implying that a(T ) ≥ |S| = |S′| + 1 = a(T ′) + 1. Applying

inductive hypothesis we obtain the result.

Now let degT (v4) ≥ 3. Assume T ′ = T − Tv3 . Then every γr2(T ′)-function can be extended to a

2RDF of T by assigning {1} to v1, ∅ to v2 and {2} to v3. Thus γr2(T ) ≤ γr2(T ′) + 2. If v4 6∈ S, then

let S = S′∪{v1, v2} and if v4 ∈ S′, then let S = (S′−{v4}∪{v1, v2, v3}. Then
∑

(S, T ) ≤ m, implying

that a(T ) ≥ |S| = |S′|+2 = a(T ′)+2. Now the result follows from inductive hypothesis and the proof

is complete. �

We conclude this paper with an open problem.

Problem. Characterize all trees achieving the bound in Theorem 2.3.
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