

Transactions on Combinatorics
ISSN (print): 2251-8657, ISSN (on-line): 2251-8665
Vol. 2 No. 3 (2013), pp. 21-32.
© 2013 University of Isfahan

BOUNDING THE RAINBOW DOMINATION NUMBER OF A TREE IN TERMS OF ITS ANNIHILATION NUMBER

N. DEHGARDI, S. M. SHEIKHOLESLAMI* AND A. KHODKAR

Communicated by Hamidreza Maimani

ABSTRACT. A 2-rainbow dominating function (2RDF) of a graph G is a function f from the vertex set V(G) to the set of all subsets of the set $\{1,2\}$ such that for any vertex $v \in V(G)$ with $f(v) = \emptyset$ the condition $\bigcup_{u \in N(v)} f(u) = \{1,2\}$ is fulfilled, where N(v) is the open neighborhood of v. The weight of a 2RDF f is the value $\omega(f) = \sum_{v \in V} |f(v)|$. The 2-rainbow domination number of a graph G, denoted by $\gamma_{r2}(G)$, is the minimum weight of a 2RDF of G. The annihilation number a(G) is the largest integer k such that the sum of the first k terms of the non-decreasing degree sequence of G is at most the number of edges in G. In this paper, we prove that for any tree T with at least two vertices, $\gamma_{r2}(T) \leq a(T) + 1$.

1. Introduction

In this paper, G is a simple graph with vertex set V = V(G) and edge set E = E(G). The order |V|of G is denoted by n = n(G). For every vertex $v \in V(G)$, the open neighborhood $N_G(v) = N(v)$ is the set $\{u \in V(G) \mid uv \in E(G)\}$ and the closed neighborhood of v is the set $N_G[v] = N[v] = N(v) \cup \{v\}$. The degree of a vertex $v \in V$ is $\deg_G(v) = \deg(v) = |N(v)|$. The minimum and maximum degree of a graph G are denoted by $\delta = \delta(G)$ and $\Delta = \Delta(G)$, respectively. The open neighborhood of a set $S \subseteq V$ is the set $N(S) = \bigcup_{v \in S} N(v)$, and the closed neighborhood of S is the set $N[S] = N(S) \cup S$. We write P_n for a path of order n. For a subset $S \subseteq V(G)$, we let

$$\sum(S,G) = \sum_{v \in S} \deg_G(v).$$

MSC(2010): Primary: 05C69; Secondary: 05C05.

Keywords: Annihilation number, 2-rainbow dominating function, 2-rainbow domination number.

Received: 30 January 2013, Accepted: 22 July 2013.

^{*}Corresponding author.

A leaf of a tree T is a vertex of degree 1, a support vertex is a vertex adjacent to a leaf and a strong support vertex is a vertex adjacent to at least two leaves. For $r, s \ge 1$, a double star S(r, s) is a tree with exactly two vertices that are not leaves, with one adjacent to r leaves and the other to s leaves. For a vertex v in a rooted tree T, let C(v) denote the set of children of v. Let D(v) denote the set of descendants of v and $D[v] = D(v) \cup \{v\}$. The maximal subtree at v is the subtree of T induced by D[v], and is denoted by T_v .

For a positive integer k, a k-rainbow dominating function (kRDF) of a graph G is a function f from the vertex set V(G) to the set of all subsets of the set $\{1, 2, ..., k\}$ such that for any vertex $v \in V(G)$ with $f(v) = \emptyset$ the condition $\bigcup_{u \in N(v)} f(u) = \{1, 2, ..., k\}$ is fulfilled. The weight of a kRDF f is the value $\omega(f) = \sum_{v \in V} |f(v)|$. The k-rainbow domination number of a graph G, denoted by $\gamma_{rk}(G)$, is the minimum weight of a kRDF of G. A $\gamma_{rk}(G)$ -function is a k-rainbow dominating function of G with weight $\gamma_{rk}(G)$. Note that $\gamma_{r1}(G)$ is the classical domination number $\gamma(G)$. The k-rainbow domination number was introduced by Brešar, Henning, and Rall [2] and has been studied by several authors (see for example [3, 4, 5, 8, 11, 12, 13]).

Let d_1, d_2, \ldots, d_n be the degree sequence of a graph G arranged in non-decreasing order, and so $d_1 \leq d_2 \leq \ldots \leq d_n$. Pepper [9] defined the annihilation number of G, denoted a(G), to be the largest integer k such that the sum of the first k terms of the degree sequence is at most half the sum of the degrees in the sequence. Equivalently, the annihilation number is the largest integer k such that

$$\sum_{i=1}^{k} d_i \le \sum_{i=k+1}^{n} d_i$$

We observe that if G has m edges and annihilation number k, then $\sum_{i=1}^{k} d_i \leq m$.

The relation between annihilation number and independence number and some domination parameters have been studied by several authors (see for example [1, 6, 7, 10]).

Our purpose in this paper is to establish an upper bound on the 2-rainbow domination number of a tree in terms of its annihilation number. We prove that for any tree T with at least 2 vertices, $\gamma_{r2}(T) \leq a(T) + 1$. The following results show that for a path P_n with at least two vertices, $\gamma_{r2}(P_n) \leq a(P_n) + 1$.

Proposition A. ([3]) For $n \ge 1$,

$$\gamma_{r2}(P_n) = \left\lfloor \frac{n}{2} \right\rfloor + 1.$$

Proposition B. For $n \ge 2$,

$$a(P_n) = \left\lceil \frac{n}{2} \right\rceil.$$

Corollary 1.1. For $n \ge 2$, $\gamma_{r2}(P_n) \le a(P_n) + 1$.

2. Main result

A subdivision of an edge uv is obtained by replacing the edge uv with a path uwv, where w is a new vertex. The subdivision graph S(G) is the graph obtained from G by subdividing each edge of G.

The subdivision star $S(K_{1,t})$ for $t \ge 2$, is called a *healthy spider* S_t . A *wounded spider* S_t is the graph formed by subdividing at most t-1 of the edges of a star $K_{1,t}$ for $t \ge 2$. Note that stars are wounded spiders. A *spider* is a healthy or wounded spider.

Lemma 2.1. If T is a spider, then $\gamma_{r2}(T) \leq a(T) + 1$ with equality if and only if $T = P_4$.

Proof. First let $T = S_t$ be a healthy spider for some $t \ge 2$. Then obviously $\gamma_{r2}(T) = t + 1$ and $a(T) = t + \lfloor \frac{t}{2} \rfloor$ and hence $\gamma_{r2}(T) \le a(T)$.

Now let T be a wounded spider obtained from $K_{1,t}$ $(t \ge 2)$ by subdividing $0 \le s \le t - 1$ edges. If (t,s) = (1,2), then $T = P_4$, $\gamma_{r2}(T) = 3$ and a(T) = 2, hence $\gamma_{r2}(T) = a(T) + 1$. If s = 0, then T is a star and we have $\gamma_{r2}(T) = 2$ and a(T) = t. Hence $\gamma_{r2}(T) \le a(T)$. Suppose s > 0. Then $\gamma_{r2}(T) = 2 + s$ and $a(T) = t + \lfloor \frac{s}{2} \rfloor$. It follows that $\gamma_{r2}(T) \le a(T)$ if $(t,s) \ne (2,1)$ and the proof is complete. \Box

Observation 2.2. Let T be a tree. If there is a path $x_3x_2x_1$ in T with $\deg(x_2) = 2$ and $\deg(x_1) = 1$, then T has a $\gamma_{r2}(T)$ -function f such that $|f(x_1)| = 1$, $|f(x_3)| \ge 1$ and $f(x_1) \ne f(x_3)$.

Proof. Suppose g is a $\gamma_{r2}(T)$ -function. Consider three cases.

Case 1. $g(x_1) = \emptyset$.

Then $g(x_2) = \{1, 2\}$ and the function $f : V(G) \to \mathcal{P}(\{1, 2\})$ defined by $f(x_1) = \{1\}, f(x_2) = \emptyset, f(x_3) = g(x_3) \cup \{2\}$ and f(x) = g(x) for $x \in V(T) - \{x_1, x_2, x_3\}$ is a $\gamma_{r2}(T)$ -function with desired property.

Case 2. $|g(x_1)| = 1$.

We may assume without loss of generality that $g(x_1) = \{1\}$. If $g(x_2) = \emptyset$, then we must have $2 \in g(x_3)$ and the result follows. Let $|g(x_2)| \ge 1$. Then obviously we may assume that $g(x_1) \ne g(x_2)$. Now the function $f: V(G) \rightarrow \mathcal{P}(\{1,2\})$ defined by $f(x_2) = \emptyset$, $f(x_3) = g(x_2) \cup g(x_3)$ and f(x) = g(x) for $x \in V(T) - \{x_2, x_3\}$ is a $\gamma_{r_2}(T)$ -function with desired property.

Case 3. $g(x_1) = \{1, 2\}.$

Then the function $f: V(G) \to \mathcal{P}(\{1,2\})$ defined by $f(x_3) = \{1\} \cup g(x_3), f(x_1) = \{2\}, f(x_2) = \emptyset$ and f(x) = g(x) for $x \in V(T) - \{x_1, x_2, x_3\}$ is a $\gamma_{r2}(T)$ -function with $|f(x_1)| = 1$ and $f(x_3)| \ge 1$, as desired.

Theorem 2.3. If T is a tree of order $n \ge 2$, then $\gamma_{r2}(T) \le a(T) + 1$, and this bound is sharp.

Proof. The proof is by induction on n. The statement holds for all trees of order n = 2, 3, 4. For the inductive hypothesis, let $n \ge 5$ and suppose that for every nontrivial tree T of order less than n the result is true. Let T be a tree of order n. We may assume that T is not a path for otherwise the result follows by Corollary 1.1. If diam(T) = 2, then T is a star and hence $\gamma_{r2}(T) \le a(T)$ by Lemma 2.1. If diam(T) = 3, then T is a double star S(r, s). In this case, a(T) = r + s and $\gamma_{r2}(T) \le 4$. If r + s = 3, then $\gamma_{r2}(T) = 3$ and so $\gamma_{r2}(T) = a(T)$. If $r + s \ge 4$, then $\gamma_{r2}(T) \le 4$ and we have $\gamma_{r2}(T) \le a(T)$. Hence we may assume that diam $(T) \ge 4$.

In what follows, we will consider trees T' formed from T by removing a set of vertices. For such a tree T' of order n', let $d'_1, d'_2, \ldots, d'_{n'}$ be a non-decreasing degree sequence of T', and let S' be a set of vertices which corresponds to the first a(T') terms in the degree sequence of T'. In fact, if $u_1, u_2, \ldots, u_{n'}$

are the vertices of T' such that $\deg(u_i) = d'_i$ for each $1 \le i \le n'$, then $S' = \{u_1, u_2, \ldots, u_{a(T')}\}$. We denote the size of T' by m'. We proceed further with a series of claims that we may assume satisfied by the tree.

Claim 1. T has no strong support vertex such as u that the graph obtained from T by removing u and the leaves adjacent to u is connected.

Let T have a strong support vertex u such that the graph obtained from T by removing u and the leaves adjacent to u is connected. Suppose w is a vertex in T with maximum distance from u. Root T at w and let v be the parent of u. Assume $T' = T - T_u$. Then every $\gamma_{r2}(T')$ -function f, can be extended to a 2-rainbow dominating function of T by defining $f(u) = \{1,2\}$ and $f(x) = \emptyset$ for each leaf x adjacent to u. Hence $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 2$. If $v \notin S'$, then $\sum(S',T) = \sum(S',T')$ and if $v \in S'$, then $\sum(S',T) = \sum(S',T') + 1$. Thus, $\sum(S',T) - 1 \leq \sum(S',T') \leq m' \leq m-3$. Let z_1, z_2 be two leaves adjacent to u and assume $S = S' \cup \{z_1, z_2\}$. Then $\sum(S,T) = \sum(S',T) + 2 \leq m$, implying that $a(T) \geq a(T') + 2$. By inductive hypothesis, we obtain

$$\gamma_{r2}(T) \le \gamma_{r2}(T') + 2 \le a(T') + 3 \le a(T) + 1$$

as desired. (\blacksquare)

Let $v_1v_2...v_D$ be a diametral path in T and root T at v_D . If $\operatorname{diam}(T) = 4$, then it follows from Claim 1 that T is a spider and so $\gamma_{r2}(T) \leq a(T)$ by Lemma 2.1. Assume $\operatorname{diam}(T) \geq 5$. It follows from Claim 1 that T_{v_3} is a spider.

Claim 2. $\deg_T(v_3) \le 3$.

Suppose $\deg_T(v_3) \ge 4$. Let $T' = T - \{v_1, v_2\}$. It is easy to see that T' has a $\gamma_{r2}(T')$ -function f such that $f(v_3) \ne \emptyset$ and hence $\gamma_{r2}(T) \le \gamma_{r2}(T') + 1$. If $v_3 \not\in S'$, then $\sum(S', T) = \sum(S', T')$ and if $v_3 \in S'$, then $\sum(S', T) = \sum(S', T') + 1$. Thus, $\sum(S', T) \le \sum(S', T') + 1 \le m' + 1 = m - 1$. Let $S = S' \cup \{v_1\}$. Then $\sum(S, T) = \sum(S', T) + \deg_T(v_1) \le m$, implying that $a(T) \ge |S| = |S'| + 1 = a(T') + 1$. By inductive hypothesis, we obtain

$$\gamma_{r2}(T) \le \gamma_{r2}(T') + 1 \le a(T') + 2 \le a(T) + 1.$$

Claim 3. $\deg_T(v_3) = 2$.

Assume $\deg_T(v_3) = 3$. First let v_3 be adjacent to a support vertex z_2 not in $\{v_2, v_4\}$. Suppose z_1 is the leaf adjacent to z_2 and let $T' = T - T_{v_3}$. Then every $\gamma_{r2}(T')$ -function can be extended to a 2RDF of T by assigning $\{1\}$ to v_1, z_1, \emptyset to v_2, z_2 and $\{2\}$ to v_3 . Thus $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 3$. As above we have $\sum(S', T) \leq \sum(S', T') + 1 \leq m' + 1 = m - 4$. Let $S = S' \cup \{v_1, v_2, z_1\}$. Then $\sum(S, T) = \sum(S', T) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(z_1) \leq m$. Therefore, $a(T) \geq |S| = |S'| + 3 = a(T') + 3$. It follows from inductive hypothesis that

$$\gamma_{r2}(T) \le \gamma_{r2}(T') + 3 \le (a(T') + 1) + 3 \le a(T) + 1.$$

Now let v_3 be adjacent to a leaf w. By Claims 1, 2 and the first part of Claim 3, we consider the following cases.

Case 3.1. $\deg_T(v_4) \ge 4$.

Let $T' = T - T_{v_3}$. Then every $\gamma_{r2}(T')$ -function can be extended to a 2RDF of T by assigning $\{1\}$ to v_1, \emptyset to v_2, w and $\{1, 2\}$ to v_3 . Hence $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 3$. Suppose that $v_4 \notin S'$. In this case, let $S = S' \cup \{v_1, v_2, w\}$. Then $\sum(S, T) = \sum(S', T) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(w) = \sum(S', T') + 4 \leq m' + 4 = m$, implying that $a(T) \geq a(T') + 3$ and the result follows by inductive hypothesis as above.

Now let $v_4 \in S'$. Let $S = (S' - \{v_4\}) \cup \{v_1, v_2, v_3, w\}$. Then $\sum(S, T) = \sum(S', T') - \deg_{T'}(v_4) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(v_3) + \deg_T(w) \le m$. Therefore, $a(T) \ge |S| = |S'| + 3 = a(T') + 3$. By inductive hypothesis, we obtain $\gamma_{r2}(T) \le \gamma_{r2}(T') + 3 \le (a(T') + 1) + 3 \le a(T) + 1$.

FIGURE 1. Case 3.1

Case 3.2. $\deg_T(v_4) = 2$.

Let $T' = T - T_{v_4}$. Then every $\gamma_{r2}(T')$ -function can be extended to a 2RDF of T by assigning $\{1\}$ to v_1 , \emptyset to v_2, v_4, w and $\{1, 2\}$ to v_3 . Hence $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 3$. It is easy to see that $\sum(S', T) \leq \sum(S', T') + 1 \leq m' + 1 = m - 4$. Let $S = S' \cup \{v_1, v_2, w\}$. Then $\sum(S, T) = \sum(S', T) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(w) \leq m$, implying that $a(T) \geq |S| = |S'| + 3 = a(T') + 3$. By inductive hypothesis, we have $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 3 \leq (a(T') + 1) + 3 \leq (a(T) - 3 + 1) + 3 = a(T) + 1$.

FIGURE 2. Case 3.2

Case 3.3. $\deg_T(v_4) = 3$ and there exists a path $v_4 w_3 w_2 w_1$ in T such that $\deg_T(w_3) = \deg_T(w_2) = 2$, $\deg_T(w_1) = 1$ and $w_3 \neq v_5$.

Let $T' = T - T_{v_4}$. Then every $\gamma_{r2}(T')$ -function can be extended to a 2RDF of T by assigning {1} to w_1, w, v_3, \emptyset to v_2, v_4, w_2 and {2} to v_1, w_3 . Hence $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 5$. Clearly $\sum (S', T) \leq \sum (S', T') + 1 \leq m' + 1 = m - 7$. Let $S = S' \cup \{v_1, v_2, w, w_1, w_2\}$. Then $\sum (S, T) = \sum (S', T) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(w_1) + \deg_T(w_2) \leq m$ which implies that $a(T) \geq |S| = |S'| + 5 = a(T') + 5$. Now the result follows by inductive hypothesis.

FIGURE 3. Case 3.3

Case 3.4. $\deg_T(v_4) = 3$ and there is a path $w_4 w_3 w_2 w_1$ in T such that $v_4 w_3 \in E(T)$, $\deg_T(w_3) = 3$, $\deg_T(w_2) = 2$, $\deg_T(w_1) = \deg_T(w_4) = 1$ and $w_3 \notin \{v_3, v_5\}$.

Let $T' = T - T_{v_4}$. Then every $\gamma_{r2}(T')$ -function can be extended to a 2RDF of T by assigning {1} to $w_4, w, v_3, w_1, \emptyset$ to v_2, v_4, w_2 and {2} to v_1, w_3 . Hence $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 6$. If $v_5 \notin S'$, then $\sum(S', T) = \sum(S', T')$ and if $v_5 \in S'$, then $\sum(S', T) = \sum(S', T') + 1$. Thus, $\sum(S', T) \leq \sum(S', T') + 1 \leq m' + 1 = m - 8$. Let $S = S' \cup \{v_1, v_2, w, w_1, w_2, w_4\}$. Then $\sum(S, T) = \sum(S', T) + 8 \leq m$, implying that $a(T) \geq |S| = |S'| + 6 = a(T') + 6$. By inductive hypothesis, we have $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 6 \leq (a(T') + 1) + 6 \leq a(T) + 1$.

FIGURE 4. Case 3.4

Case 3.5. deg_T(v_4) = 3 and v_4 is adjacent to a leaf, say w'.

Let $T' = T - T_{v_4}$. Then every $\gamma_{r2}(T')$ -function can be extended to a 2RDF of T by assigning $\{1\}$ to v_1, w', w, \emptyset to v_2, v_4 and $\{2\}$ to v_3 . Hence $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 4$. As above, we have $\sum(S', T) \leq \sum(S', T') + 1 \leq m' + 1 = m - 5$. Let $S = S' \cup \{v_1, v_2, w, w'\}$. Then $\sum(S, T) = \sum(S', T) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(w) + \deg_T(w') \leq m$. Therefore, $a(T) \geq |S| = |S'| + 4 = a(T') + 4$ and the result follows by inductive hypothesis.

FIGURE 5. Case 3.5

Case 3.6. $\deg_T(v_4) = 3$ and v_4 is adjacent to a support vertex of degree 2, say w_2 , other than v_5 . Let w_1 be the leaf adjacent to w_2 . We need to consider the following subcases.

FIGURE 6. Case 3.6

Subcase 3.6.1 $\deg_T(v_5) \ge 4$.

Let $T' = T - T_{v_4}$. Then every $\gamma_{r2}(T')$ -function can be extended to a 2RDF of T by assigning {1} to $w, v_1, w_1, w_2, \emptyset$ to v_2, v_4 and {2} to v_3 . Hence $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 5$. Suppose that $v_5 \notin S'$. Then $\sum (S', T) = \sum (S', T')$. In this case, let $S = S' \cup \{w, v_1, v_2, w_1, w_2\}$. Then $\sum (S, T) = \sum (S', T) + \deg_T(w_1) + \deg_T(w_2) + \deg_T(w_1) + \deg_T(w_2) = \sum (S', T') + 7 \leq m' + 7 = m$, implying that $a(T) \geq a(T') + 5$ and the result follows by inductive hypothesis.

Now let $v_5 \in S'$. Suppose $S = (S' - \{v_5\}) \cup \{w, v_1, v_2, v_3, w_1, w_2\}$. Then $\sum(S, T) = \sum(S', T') - \deg_{T'}(v_5) + \deg_T(w) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(v_3) + \deg_T(w_1) + \deg_T(w_2) \le m$. Therefore, $a(T) \ge |S| = |S'| + 5 = a(T') + 5$. By inductive hypothesis, we obtain $\gamma_{r2}(T) \le \gamma_{r2}(T') + 5 \le (a(T') + 1) + 5 \le a(T) + 1$.

FIGURE 7. Subcase 3.6.1

Subcase 3.6.2 $\deg_T(v_5) = 2.$

Assume $T' = T - (T_{v_3} \cup T_{w_2})$. Since $\deg_T(v_5) = 2$, there is a $\gamma_{r2}(T')$ -function, say f, so that $|f(v_4)| = 1$ by Observation 2.2. We may assume without loss of generality that $f(v_4) = \{1\}$. Now f can be extended to a 2RDF of T by assigning $\{1\}$ to v_1, v_2, \emptyset to v_3, w_2 and $\{2\}$ to w, w_1 . Hence $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 4$. As above, we have $\sum(S', T) \leq \sum(S', T') + 1$. If $v_4 \notin S'$, then let $S = S' \cup \{v_1, w_1, w, v_2\}$ and if $v_5 \in S'$, then let $S = (S' - \{v_4\}) \cup \{v_1, v_2, w, w_1, w_2\}$. It is easy to see that $\sum(S, T) \leq m$ and hence $a(T) \geq |S| = |S'| + 4 = a(T') + 4$. Now the result follows by inductive hypothesis.

Subcase 3.6.3 deg_T(v_5) = 3 and there is a path $v_5 z_4 z_3 z_2 z_1$ in T such that deg_T(z_4) = deg_T(z_3) = deg_T(z_2) = 2, deg_T(z_1) = 1 and $z_4 \neq v_6$.

FIGURE 8. Subcase 3.6.2

Let $T' = T - \{z_1, z_2\}$. By Observation 2.2, T' has a $\gamma_{r2}(T')$ -function such as f that $|f(z_3)| = 1$. We may assume without loss of generality that $f(z_3) = \{1\}$. Now f can be extended to a 2RDF of T by assigning $\{2\}$ to z_1 and \emptyset to z_2 . Hence $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 1$. As above, we have $\sum (S', T) \leq \sum (S', T') + 1$. Let $S = S' \cup \{z_1\}$. Clearly $\sum (S, T) \leq m$ and hence $a(T) \geq |S| = |S'| + 1 = a(T') + 1$ and the result follows by inductive hypothesis.

FIGURE 9. Subcase 3.6.3

Subcase 3.6.4 deg_T(v_5) = 3 and there is a path $v_5v'_4v'_3v'_2v'_1$ in T such that $T_{v'_4} \simeq T_{v_4}$. Let $T' = T - T_{v_5}$. It is easy to see that $\gamma_{r_2}(T) \leq \gamma_{r_2}(T') + 10$ and $a(T) \geq a(T') + 10$. Hence the result follows by inductive hypothesis.

FIGURE 10. Subcase 3.6.4

Subcase 3.6.5 deg_T(v_5) = 3 and there is a path $v_5 z_3 z_2 z_1$ in T such that deg_T(z_3) = deg_T(z_2) = 2, deg_T(z_1) = 1 and $z_3 \neq v_6$.

Let $T' = T - T_{v_5}$. Then every $\gamma_{r2}(T')$ -function can be extended to a 2RDF of T by assigning {1} to z_1, v_4, v_3, \emptyset to v_2, v_5, z_2, w_2 and {2} to v_1, w_1, w, z_3 . Thus $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 7$. Clearly $\sum(S', T) \leq \sum(S', T') + 1$. Let $S = S' \cup \{w, w_1, v_1, z_1, v_2, z_2, z_3\}$. Then $\sum(S, T) = \sum(S', T) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(w) + \deg_T(w_1) + \deg_T(z_1) + \deg_T(z_2) + \deg_T(z_3) \leq m$, implying that $a(T) \geq |S| = |S'| + 7 = a(T') + 7$. It follows from inductive hypothesis that $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 7 \leq (a(T') + 1) + 7 \leq a(T) + 1$.

FIGURE 11. Subcase 3.6.5

Subcase 3.6.6 deg_T(v_5) = 3 and there is a path $v_5 z_3 z_2 z_1$ in T such that all neighbors of z_3 , except v_5 and z_2 , are leaves, deg_T(z_1) = 1, deg_T(z_3) \geq 3, deg_T(z_2) = 2 and $z_3 \neq v_6$.

Assume $T' = T - T_{v_5}$. Then every $\gamma_{r2}(T')$ -function can be extended to a 2RDF of T by assigning $\{1,2\}$ to z_3 , $\{1\}$ to z_1, v_1, v_2, v_4 , \emptyset to v_3, v_5, z_2, w_2 and every leaves at z_3 and $\{2\}$ to w, w_1 . Thus $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 8$. Clearly $\sum (S', T) \leq \sum (S', T') + 1$. Let z_4 be a leaf adjacent to z_3 and let $S = S' \cup \{w, w_1, v_1, z_1, z_4, v_2, w_2, z_2\}$. Then $\sum (S, T) \leq m$ and so $a(T) \geq |S| = |S'| + 8 = a(T') + 8$. It follows from inductive hypothesis that $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 8 \leq (a(T') + 1) + 8 \leq a(T) + 1$.

FIGURE 12. Subcase 3.6.6

Subcase 3.6.7 deg_T(v_5) = 3 and v_5 is adjacent to the center, say $z \neq v_6$, of a spider different from P_4 .

Let $T' = T - T_z$. Using an argument similar to that described in the proof of Lemma 2.1 and applying inductive hypothesis show that $\gamma_{r2}(T) \leq a(T) + 1$.

Subcase 3.6.8 deg_T(v_5) = 3 and v_5 is adjacent to a support vertex of degree 2, say z_2 .

Let z_1 be the leaf adjacent to z_2 and let $T' = T - \{v_1, w, w_1\}$. Considering the paths $v_5 z_2 z_1$ and $v_4 v_3 v_2$ in T', it follows from Observation 2.2 that T' has a $\gamma_{r2}(T')$ -function f such that $|f(v_5)| = |f(v_4)| \ge 1$.

FIGURE 13. Subcase 3.6.7

Since also $|f(w_2)| + |f(v_4)| + |f(v_3)| + |f(v_2)| \ge 3$, we may assume without loss of generality that $f(v_4) = \{1\}, f(v_3) = \emptyset, f(w_2) = f(v_2) = \{2\}$. Now the function $g: V(T) \to \mathcal{P}(\{1,2\})$ defined by $g(w_1) = \{2\}, g(v_1) = g(w) = \{1\}, g(w_2) = \emptyset$ and g(x) = f(x) if $x \in V(T) - \{v_1, w, w_1, w_2\}$ is a 2RDF of T, implying that $\gamma_{r2}(T) \le \gamma_{r2}(T') + 2$. If $|S' \cap \{v_2, v_3, w_2\}| \le 1$, then $\sum(S', T) \le \sum(S', T') + 1$. In this case, let $S = S' \cup \{v_1, w\}$. Then $\sum(S, T) \le m$ implying that $a(T) \ge a(T') + 2$. Let $|S' \cap \{v_2, v_3, w_2\}| \ge 2$. If $v_3 \in S'$, then let $S = (S' - \{v_3\}) \cup \{v_1, w, w_1\}$. Obviously $\sum(S, T) \le m$ and so $a(T) \ge a(T') + 2$. If $v_3 \notin S'$, then let $S = (S' - \{v_2\}) \cup \{v_1, w, w_1\}$. Then $\sum(S, T) \le m$ and so $a(T) \ge a(T') + 2$. Thus, in all cases $a(T) \ge a(T') + 2$ and the result follows by inductive hypothesis.

FIGURE 14. Subcase 3.6.8

Subcase 3.6.9 $\deg_T(v_5) = 3$ and v_5 is adjacent to a leaf z. If diam(T) = 5, then clearly $\gamma_{r2}(T) = a(T) = 7$ and the result is true. Let diam $(T) \ge 6$. Let $T' = T - T_{v_5}$. Then every $\gamma_{r2}(T')$ -function can be extended to a 2RDF of T by assigning $\{1\}$ to w, w_1, z, v_1, v_2 and \emptyset to w_2, v_5, v_3 and $\{2\}$ to v_4 . Thus $\gamma_{r2}(T) \le \gamma_{r2}(T') + 6$. Clearly $\sum(S', T) \le \sum(S', T') + 1$. Let $S = S' \cup \{v_1, v_2, w_1, w_2, w, z\}$. Then $\sum(S, T) = \sum(S', T) + \deg_T(v_1) + \deg_T(v_2) + \deg_T(w_1) + \deg_T(w_2) + \deg_T(w_1) + \deg_T(w_2) + \deg_T(w_1) + \deg_T(w_2) + \deg_T(w_1) + \deg_T(w_2) = 0$.

FIGURE 15. Subcase 3.6.9

We now return to the proof of Theorem. Note that by Claim 1 we may assume $\deg_T(v_2) = 2$ and by Claim 3 we have $\deg_T(v_3) = 2$. First let $\deg_T(v_4) = 2$. Assume $T' = T - T_{v_2}$. By Observation 2.2, there is a $\gamma_{r2}(T')$ -function f such that $|f(v_3)| = 1$. Suppose without loss of generality that $f(v_3) = \{1\}$. Now f can be extended to a 2RDF of T by assigning \emptyset to v_2 and $\{2\}$ to v_1 . Thus $\gamma_{r2}(T) \leq \gamma_R(T') + 1$. Let $S = S' \cup \{v_1\}$. Then $\sum(S,T) \leq m$, implying that $a(T) \geq |S| = |S'| + 1 = a(T') + 1$. Applying inductive hypothesis we obtain the result.

Now let $\deg_T(v_4) \geq 3$. Assume $T' = T - T_{v_3}$. Then every $\gamma_{r2}(T')$ -function can be extended to a 2RDF of T by assigning $\{1\}$ to v_1 , \emptyset to v_2 and $\{2\}$ to v_3 . Thus $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 2$. If $v_4 \notin S$, then let $S = S' \cup \{v_1, v_2\}$ and if $v_4 \in S'$, then let $S = (S' - \{v_4\} \cup \{v_1, v_2, v_3\}$. Then $\sum(S, T) \leq m$, implying that $a(T) \geq |S| = |S'| + 2 = a(T') + 2$. Now the result follows from inductive hypothesis and the proof is complete.

We conclude this paper with an open problem.

Problem. Characterize all trees achieving the bound in Theorem 2.3.

Acknowledgments

This work has been supported by the grant number 218D4963 from Azarbaijan Shahid Madani University.

References

- N. Dehgardai, S. Norouzian and S. M. Sheikholeslami, Bounding the domination number of a tree in terms of its annihilation number, *Trans. Comb.*, 2 no. 1 (2013) 9–16.
- [2] B. Brešar, M. A. Henning and D. F. Rall, Rainbow domination in graphs, Taiwanese J. Math., 12 (2008) 213–225.
- [3] B. Brešar and T. K. Šumenjak, On the 2-rainbow domination in graphs, Discrete Appl. Math., 155 (2007) 2394–2400.
- [4] G. J. Chang, J. Wu and X. Zhu, Rainbow domination on trees, Discrete Appl. Math., 158 (2010) 8–12.
- [5] T. Chunling, L. Xiaohui, Y. Yuansheng and L. Meiqin, 2-rainbow domination of generalized Petersen graphs P(n, 2), Discrete Appl. Math., 157 (2009) 1932–1937.
- [6] W. J. Desormeaux, T. W. Haynes and M. A. Henning, Relating the annihilation number and the total domination number of a tree, *Discrete Appl. Math.*, 161 (2013) 349-354.
- [7] C. E. Larson and R. Pepper, Graphs with equal independence and annihilation numbers, *The Electron. J. Combin.*, 18 (2011) #P180.
- [8] D. Meierling, S. M. Sheikholeslami and L. Volkmann, Nordhaus-Gaddum bounds on the k-rainbow domatic number of a graph, Appl. Math. Lett., 24 (2011) 1758–1761.
- [9] R. Pepper, Binding Independence, Ph.D. Dissertation, University of Houston, 2004.
- [10] R. Pepper, On the annihilation number of a graph, Recent Advances In Electrical Engineering: Proceedings of the 15th American Conference on Applied Mathematics, (2009) 217–220.
- [11] S. M. Sheikholeslami and L. Volkmann, The k-rainbow domatic number of a graph, Discuss. Math. Graph Theory, 32 (2012) 129–140.

- [12] Y. Wu and N. Jafari Rad, Bounds on the 2-rainbow domination number of graphs, Graphs Combin., 29 no. 4 (2013) 1125–1133.
- [13] G. Xu, 2-rainbow domination of generalized Petersen graphs P(n, 3), Discrete Appl. Math., 157 (2009) 2570–2573.

N. Dehgardi

Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran Email: ndehgardi@gmail.com

S. M. Sheikholeslami

Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran Email: s.m.sheikholeslami@azaruniv.edu

Abdollah Khodkar

Department of Mathematics, University of West Georgia, Carrollton, GA 30118, U.S.A. Email: akhodkar@westga.edu