Note on degree Kirchhoff index of graphs

Document Type: Research Paper

Authors

1 University of Kashan

2 University of Kragujevac Kragujevac, Serbia

Abstract

The degree Kirchhoff index of a connected graph $G$ is defined as‎ ‎the sum of the terms $d_i\,d_j\,r_{ij}$ over all pairs of vertices‎, ‎where $d_i$ is the‎ ‎degree of the $i$-th vertex‎, ‎and $r_{ij}$ the resistance distance between the $i$-th and‎ ‎$j$-th vertex of $G$‎. ‎Bounds for the degree Kirchhoff index of the line and para-line‎ ‎graphs are determined‎. ‎The special case of regular graphs is analyzed‎.

Keywords

Main Subjects


R. B. Bapat, I. Gutman and W. Xiao (2003). A simple method for computing resistance distance. Z. Naturforsch.. 58a, 494-498
J. A. Bondy and U. S. R. Murty (1976). Graph theory with applications. American Elsevier Publishing Co., Inc., New York.
N. Biggs (1993). Algebraic graph theory. Second edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge.
S. Bozkurt and D. Bozkurt (2012). On the sum of powers of normalized Laplacian eigenvalues of graphs. MATCH Commun. Math. Comput. Chem.. 68, 917-930
S. Butler (2008). Eigenvalues and structures of graphs. Ph. D. Thesis, University of California, San Diego.
M. Cavers, S. Fallat and S. Kirkland (2010). On the normalized Laplacian energy and general Randic index R_{-1} of graphs. Linear Algebra Appl.. 433, 172-190
F. R. K. Chung (1997). Spectral graph theory. Am. Math. Soc., Providence.
H. Chen and F. Zhang (2007). Resistance distance and the normalized Laplacian spectrum. Discrete Appl. Math.. 155, 654-661
K. C. Das, A. D. Gungor and S. B. Bozkurt On the normalized Laplacian eigenvalues of graphs. Ars Combin., in press.
X. Gao, Y. Luo and W. Liu (2012). Kirchhoff index in line, subdivision and total graphs of a regular graph. Discrete Appl. Math.. 160, 560-565
I. Gutman and B. Mohar (1996). The Quasi--Wiener and the Kirchhoff indices coincide. J. Chem. Inf. Comput. Sci.. 36, 982-985
G. H. Hardy, J. E. Littlewood and G. Polya (1988). Inequalities. Cambridge Univ. Press, Cambridge.
D. J. Klein and M. Randi'c (1993). Resistance distance. J. Math. Chem.. 12, 81-95
J. L. Palacios (2001). Resistance distance in graphs and random walks. Int. J. Quantum Chem.. 81, 29-33
J. L. Palacios (2001). Closed--form formulas for Kirchhoff index. Int. J. Quantum Chem.. 81, 135-140
J. L. Palacios (2013). Upper and lower bounds for the additive degree--Kirchhoff index. MATCH Commun. Math. Comput. Chem.. 70, 651-655
J. Palacios and J. M. Renom (2011). Another look at the degree Kirchhoff index. Int. J. Quantum Chem.. 111, 3453-3455
W. Xiao and I. Gutman (2003). On resistance matrices. MATCH Commun. Math. Comput. Chem.. 49, 67-81
W. Xiao and I. Gutman (2003). Resistance distance and Laplacian spectrum. Theor. Chem. Acc.. 110
W. Xiao and I. Gutman (2004). Relations between resistance and Laplacian matrices and their applications. MATCH Commun. Math. Comput. Chem.. 51, 119-127
W. Yan, Y. N. Yeh and F. Zhang (2012). The asymptotic behavior of some indices of iterated line graphs of regular graphs. Discrete Appl. Math.. 160, 1232-1239
F. J. Zhang, Y. C. Chen and Z. B. Chen (2009). Clique-inserted graphs and spectral dynamics of clique--inserting. J. Math. Anal. Appl.. 349, 211-225
H. Zhang, Y. Yang and C. Li (2009). Kirchhoff index of composite graphs. Discrete Appl. Math.. 157, 2918-2927
B. Zhou and N. Trinajstic (2008). A note on Kirchhoff index. Chem. Phys. Lett.. 455, 120-123
B. Zhou and N. Trinajstic (2009). On resistance--distance and Kirchhoff index. J. Math. Chem.. 46, 283-289