On the number of mutually disjoint cyclic designs

Document Type: Research Paper


Department of Mathematics, University of Zanjan


We denote by $LS[N](t,k,v)$ a large set of $t$-$(v,k,\lambda)$ designs of size $N$‎, ‎which is a partition of all $k$-subsets of‎ ‎a $v$-set into $N$ disjoint $t$-$(v,k,\lambda)$ designs and‎ ‎$N={v-t \choose k-t}/\lambda$‎. ‎We use the notation‎ ‎$N(t,v,k,\lambda)$ as the maximum possible number of mutually‎ ‎disjoint cyclic $t$-$(v,k,\lambda)$designs‎. ‎In this paper we give‎ ‎some new bounds for $N(2,29,4,3)$ and $N(2,31,4,2)$‎. ‎Consequently‎ ‎we present new large sets $LS[9](2,4,29)‎, ‎LS[13](2,4,29)$ and‎ ‎$LS[7](2,4,31)$‎, ‎where their existences were already known‎.


Main Subjects

L. Bluskov and S. S. Magliveras (2001). On the number of mutually disjoint cyclic designs and large sets of designs. J. Statist. Plann. Inference. 95, 133-142
M. Emami and O. Naserian (2010). Some new large sets of $t$-designs. Discrete Math.. 310, 1629-1632
G. B. Khosrovshahi and R. Laue (2007). $t$-Designs, tleq 3 , in: Handbook of combinatorial designs. 2nd ed. (C. J. Colbourn and J. H. Dinitz, eds.) CRC press, Boca Raton. , 98-110
G. B. Khosrovshahi, R. Laue and B. Tayfeh-Rezaie (2005). On large sets of t-design of size four. Bayreuth. Math. Schr.. (74), 136-144
E. S. Kramer and D. M. Mesner (1976). t-designs on hypergraphs. Discrete Math.. 15, 263-296
R. Laue, S. S. Magliveras and A. Wassermann (2001). New large sets of t-designs. J. Combin. Des.. 9, 40-59