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Abstract. A watching system in a graph G = (V, E) is a set W = {ω1, ω2, . . . , ωk}, where ωi =

(vi, Zi), vi ∈ V and Zi is a subset of closed neighborhood of vi such that the sets LW (v) = {ωi : v ∈ Zi}
are non-empty and distinct, for any v ∈ V . In this paper, we study the watching systems of line graph

Kn which is called triangular graph and denoted by T (n). The minimum size of a watching system of

G is denoted by ω(G). We show that ω(T (n)) = d 2n
3
e.

1. Introduction

Throughout this paper we will assume that all graphs are finite, simple, and undirected. We use [5]

for terminology and notations not defined here.

For a graph G, let V = V (G) and E(G) denote the set of vertices, edges of G, respectively. For a

vertex x ∈ V (G), the degree of x, denoted deg(x), is the number of edges of G incident with x. We

use ∆(G) = ∆ to denote the maximum degree of vertices of G. For any vertex v ∈ V (G), the open

neighborhood of v is the set NG(v) = {u : uv ∈ E}, while the closed neighborhood of v is the set

NG[v] = NG(v) ∪ {v}. A complete graph is a graph in which each pair of distinct vertices is joined by

an edge. We denote the complete graph with n vertices by Kn. A subgraph H of a graph G is called

a spanning subgraph if V (H) = V (G). For every nonnegative integer r, the graph G is called r-regular

if the degree of each vertex of G is equal to r. The triangular graph, T (n), is the line graph of the

complete graph Kn. The vertices of T (n) may be identified with the 2-subsets of {v1, v2, . . . , vn} that

are adjacent if and only if the 2-subsets have a nonempty intersection.
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Let C ⊆ V be a subset of vertices of G and for all vertex v ∈ V , we define

IC(v) := NG[v]
⋂
C.

If all IC(v)’s are nonempty, then C is a dominating set (or a covering code) of G; if moreover the IC(v)’s

are all distinct, then we say that C is an identifying code of G. The set IC(v) is called the identifying

set of the vertex v. Note that the graph G has an identifying code if and only if distinct vertices must

have distinct closed neighborhoods. A graph with this property is called twin-free or identifiable. The

minimum size of a identifying code in G is denoted by ι(G). This concept was introduced in 1998

in [6] to model fault diagnosis in multiprocessor systems and have since been studied widely in the

communities of both graph theory and coding theory, for instance see [1, 3, 4, 7, 9]. They are also

used for the design of indoor detection systems based on wireless sensor network.

Watching systems were introduced in [2], is a generalization of identifying codes. A watcher ω of G

is a couple ω = (υi, Zi), where υi is a vertex and Zi ⊆ NG[υi]. We will say that ω is located at υi

and that Zi is its watching area or watching zone. A watching system in a graph G is a finite set

W = {ω1, ω2, . . . , ωk} where ωi , 1 ≤ i ≤ k is a watcher such that {Z1, Z2, . . . , Zk} is an identifying

system. So W is a watching system for G if the sets LW (v) = {ωi : v ∈ Zi} are non-empty and

distinct, for any v ∈ V . The watching system number of G denote by ω(G) is the minimum size of

watching systems of G.

Note that an identifying code of G, when exists, define a watching system for G, but in a watching

system, the selection of neighbor vertices is favorite as watching area from a watcher. This issue is

the differentiate of a watching system to an identifying code.

In this paper, we consider the triangular graph, T (n), and compute watching system number of this

family of graphs.

2. Main Theorem

In this section, we study the watching systems of triangular graph T (n). At first, we mention some

earlier results about the watching system of general graphs which are used in the rest of this section.

Theorem 2.1. [2]

a) If G is twin free graph, then γ(G) ≤ w(G) ≤ i(G),

b)dlog2n+ 1e ≤ w(G) ≤ γ(G)d∆(G) + 2e,
c) If G is connected graph, then w(G) ≤ 2n

3 ,

d) If H is a spanning subgraph, then w(G) ≤ w(H).

Let Kn be the complete graph of order n with vertex set V = {v1, . . . , vn}. Hence we can assume

that T (n) is a graph with vertex set eij = vivj ∈ E(G), and two vertices of T (G) is adjacent if and

only if two edges of Tn, has non-empty intersection. Suppose that W = {ω1, ω2, . . . , ωm} is a watching

system for T (n), with ωl = (el, Zl), where el = vilvjl
is an edge of Kn, 1 ≤ il, jl ≤ n. In addition

Zl ⊆ NT (n)[el]. Conceder the following notation:

EW = {el : (el, Zl) ∈W},
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VW = ∪el∈EW
el,

Ri = The set of elements of V which appear i times in the elements of EW ,

ri = |Ri|.

Lemma 2.2. With the above notations, we have

a) r0 ≤ 1.

b) |{l : el ∈ El, el ⊆ R1}| ≤ 1, in addition if r0 = 1, then {l : el ∈ El, el ⊆ R1} = ∅.

Proof. a) Suppose that r0 > 1. Hence we can choose two distinct elements a, b ∈ R0. Therefore

e = ab /∈ N [el] for any el ∈ EW and this fact implies that LW (ab) = ∅, which is a contradiction.

b) Suppose that there are et, el ∈ EW , such that el = ab, et = cd, and a, b, c, d ∈ R1. Set ωl =

(el, Zl), ωt = (et, Zt). We have

LW (ab) = {ωl}, LW (cd) = {ωt}.

Since LW (ac), LW (ad) ⊆ {ωl, ωt}, we conclude that

LW (ac) = LW (ad) = {ωl, ωt}.

Hence

|{l : el ∈ El, el ⊆ R1}| ≤ 1.

Let r0 = 1 and vn /∈ el, for any el ∈ EW . If et = ab ⊆ R1, then LW (avn) = LW (bvn) = {ωt}, which

is a contradiction. �

Lemma 2.3. With the above notations,

a) If r0 = 0, then m ≥ d2n−1
3 e.

b) If r0 = 1, then m ≥ d2(n−1)
3 e.

Proof. a) We know r1+2(n−r1) ≤ 2m. On the other hands r1 ≤ m+1 by Lemma 2.2. So 2n ≤ 3m+1.

Therefore m ≥ d2n−1
3 e.

b) We know r1 + 2(n − 1 − r1) ≤ 2m, by Lemma 2.2, r1 ≤ m. So 2n − 2 ≤ 3m and the result is

obtained. �

Theorem 2.4. Let n ≥ 3 be an integer. Then ω(T (n)) = d2n
3 e.

Proof. Let V (Kn) = {v1, v2, . . . , vn}. We consider three cases:

Case 1: n = 3k, where k ≥ 3 is an integer. For n = 3 we have T (3) ∼= K3 and therefore ω(T (3)) = 2

by Lemma 2.1. For n = 6, consider the set

W = {ω1, ω2, ω3, ω4},

where

ω1 = (v1v2, N(v1v2)), ω2 = (v1v3, N(v1v3)),

ω1 = (v1v4, N(v1v4)), ω2 = (v1v5, N(v1v5)).
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It is not difficult to see that W is a watching system for T (6). Hence ω(T (6)) ≤ 4 and by applying

Lemma 2.3, we conclude that ω(T (6)) = 4.

Now suppose that n ≥ 9. For 1 ≤ i ≤ k, set ei = (v3iv3i−1, Zi), fi = (v3iv3i−2, Ti), where Zi =

N(v3iv3i−1), and Ti = N(v3iv3i−2). We claim that the set W = {ei, fi : 1 ≤ i ≤ k}, is a watching

system for T (n). We prove this claim by induction on k. Let k = 3. It is not difficult to show that

the set

W = {e1, e2, e3, f1, f2, f3}

is a watching system for T (9).

Suppose that our claim is true for k − 1. Hence W ′ = {e′i, f ′i : 1 ≤ i ≤ k − 1}, where e′i =

(v3iv3i−1, Z
′
i), f

′
i = (v3iv3i−2, T

′
i ), Z

′
i = NT (n−3)(v3iv3i−1) and T ′i = NT (n−3)(v3iv3i−2) is a watching

system for T (n − 3). We show that the set W = {ei, fi : 1 ≤ i ≤ k}, where ei = (v3iv3i−1, Zi), fi =

(v3iv3i−2, Ti), Zi = NT (n)(v3iv3i−1), and Ti = NT (n)(v3iv3i−2) is a watching system for T (n). For

1 ≤ i ≤ j ≤ n− 3, we have

LW (vivj) = {fr, es : f ′r, e
′
s ∈ LW ′(vivj)}.

For j ≤ k − 1, we have

LW (vnv3j) = {fj , ej , fk, ek},

LW (vn−1v3j) = {fj , ej , ek},

LW (vn−2v3j) = {fj , ej , fk},

LW (vnv3j−1) = {ej , fk, ek},

LW (vn−1v3j−1) = {ej , ek},

LW (vn−2v3j−1) = {ej , fk},

LW (vnv3j−2) = {fj , fk, ek},

LW (vn−1v3j−2) = {fj , ek},

LW (vn−2v3j−2) = {fj , fk}.

In addition,

LW (vnvn−1) = {fk}, LW (vnvn−2) = {ek}, LW (vn−1vn−2) = {ek, fk}.

Since W ′ is a watching system of T (n− 3), we conclude that W is a watching system of T (n). Hence

w(T (n)) ≤ 2n
3 . On the other hand ω(T (n)) ≥ 2n

3 by Lemma 2.3. Hence ω(T (n)) = 2n
3 .

Case 2: n = 3k + 1, k ≥ 1.

Set w1 = (v1v3, A1), w2 = (v2v3, A2) and w3 = (v3v4, A3), where

A1 = N [v1v3] \ {v2v3, v3v4}, A2 = N [v2v3] \ {v1v3, v3v4}, A3 = N [v3v4] \ {v1v3, v2v3}.
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For 2 ≤ i ≤ k, set ei = (v3iv3i−1, Zi), fi = (v3iv3i+1, Ti), where Zi = N(v3iv3i−1), and Ti = N(v3iv3i+1).

We claim that the set W = {w1, w2, w3, ei, fi : 2 ≤ i ≤ k}, is a watching system for T (n). We prove

this claim by induction on k. For k = 1 we have

W = {A1, A2, A3}

and this implies that

LW (v1v2) = {A1, A2}, LW (v1v3) = {A1}, LW (v1v4 = {A1, A3}

LW (v2v3) = {A2}, LW (v2v4) = {A2, A3}, LW (v3v4) = {A1, A2, A3}.

Hence W is a watching system for T (4). The argument of the rest of proof is similar with the Case 1.

Hence ω(T (n)) ≤ 2k + 1 = d2n
3 e

Also ω(T (n)) ≥ 2k by Lemma 2.3. If ω(T (n)) = 2k, then r0 = 1, by applying Lemma 2.3. Hence

|R1| = 2k, |R2| = k and hence there are two watcher ω1 = (v1v3, Z1), ω2 = (v2v3, Z2) with v1, v2 ∈ R1

and v3 ∈ R2. Suppose that v4 /∈ VW . Hence the labeling sets

LW (v1v2), LW (v1v4), LW (v2v3), LW (v2v4),

are non-empty distinct subsets {ω1, ω2} and this is a contradiction. Therefore 2k + 1 ≤ ω(T (n)).

Hence

ω(T (n)) = 2k + 1 = d2n
3
e.

Hence ω(T (n)) = d2n
3 e.

Case 3: n = 3k + 2, k ≥ 1.

In this case consider the set

W = {w1, w2, w3, w4, ei, fi : 2 ≤ i ≤ k},

where

w1 = (v1v3, N [v1v3] \ {v2v3, v3v4, v3v5}), w2 = (v2v3, N [v2v3] \ {v1v3, v3v4, v3v5})

w3 = (v3v4, N [v3v4] \ {v1v3, v2v3, v3v5}), w4 = (v3v5, N [v3v5] \ {v1v3, v2v3, v3v4})

and for 2 ≤ i ≤ k
ei = (v3iv3i+1, Zi), fi = (v3iv3i+2, Ti),

with

Zi = N(v3iv3i+1), Ti = N(v3iv3i+2).

For k = 1, we have W = {w1, w2, w3, w4} and therefore

LW (v1v2) = {w1, w2}, LW (v1v3) = {w1}, LW (v1v4) = {w1, w3}, LW (v1v5) = {w1, w4}

LW (v2v3) = {w2}, LW (v2v4) = {w2, w3}, LW (v2v5) = {w2, w4},

LW (v3v4) = {w3}, LW (v3v5) = {w4}, LW (v4v5) = {w3, w4}.

Hence W ia a watching system for T (5). Now by induction and the same argument as Case 1, we

prove that W is a watching system for T (n). Hence ω(T (n)) ≤ 2k + 2. By applying Lemma 2.3. we
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have w(T (n)) ≥ 2k + 1.

For k = 1, the graph T (5) has 10 vertices and hence ω(T (5)) ≥ 4 and hence ω(T (5)) = 4 = 2k + 2.

Suppose that k ≥ 2 and w(T (n)) = 2k + 1. Recall that Ri be the set of V = {v1, v2, . . . , vn} which

appear i times in the element of EW and |Ri| = ri. By the Lemma 2.3, r0 ≤ 1. If r0 = 1, then |R1| =
2k, |R2| = k + 1. Since k ≥ 2, then there exist v1, v2 ∈ R1, v3 ∈ R2 such that v1v3, v2v3 ∈ EW . Hence

there are two watchers w1 = (v1v3, Z1), w2 = (v2v3, Z2) ∈ W with Z1 ⊆ N [v1v3] and Z2 ⊆ N [v2v3].

Suppose that vn ∈ R0. Hence the sets

LW (v1v2), LW (v1v3), LW (v1vn), LW (v2vn)

are distinct non-empty subsets of {w1, w2}, which is a contradiction. If r0 = 0, then |R1| = 2k +

2, |R2| = k. By applying Lemma 2.3, there are watchers

w1 = (v1v4, Z1), w2 = (v2v5, Z2),W3 = (v3v5, Z3)

belong to W such that v1, v2, v3, v4 ∈ R1 and v5 ∈ R2. Hence the sets

LW (v1v2), LW (v1v3), LW (v1v4), LW (v1v5),

LW (v2v3), LW (v2v4), LW (v2v5), LW (v3v4),

are distinct non-empty subsets of {w1, w2, w3}, which is a contradiction. Hence

2k + 1 < ω(T (n)) ≤ 2k + 2,

and we conclude that ω(T (n)) = 2k + 2 = d2n
3 e. �

Remark 2.5. In [8], it is proved that ι(T (n)) = n− 1 for n > 5 and for n = 4, 5, ι(T (n)) = 5. In this

paper we show that ω(T (n)) = d2n
3 e. This means that in this family of graphs the watching system is

more efficient than identifying code.
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