GROUP MAGICNESS OF CERTAIN PLANAR GRAPHS

M. J. NIKMEHR* AND S. BAHRAMIAN

Communicated by Hamid Reza Maimani

Abstract. Let \(A \) be a non-trivial abelian group and \(A^* = A \setminus \{0\} \). A graph \(G \) is said to be \(A \)-magic graph if there exists a labeling \(l : E(G) \to A^* \) such that the induced vertex labeling \(l^+ : V(G) \to A \), define by

\[
l^+(v) = \sum_{uv \in E(G)} l(uv)
\]

is a constant map. The set of all constant integers such that \(\sum_{u \in N(v)} l(uv) = c \), for each \(v \in N(v) \), where \(N(v) \) denotes the set of adjacent vertices to vertex \(v \) in \(G \), is called the index set of \(G \) and denoted by \(\text{In}_{\text{A}}(G) \). In this paper we determine the index set of certain planar graphs for \(\mathbb{Z}_h \), where \(h \in \mathbb{N} \), such as wheels and fans.

1. Introduction

For an abelian group \(A \) (written additively) let \(A^* = A \setminus \{0\} \). A map \(l : E(G) \to A^* \) is called a labeling of \(G \). Given a labeling on the edge set of \(G \) one can introduce a vertex labeling \(l^+ : V(G) \to A \), by \(l^+(v) = \sum_{uv \in E(G)} l(uv) \). A graph \(G \) is said to be \(A \)-magic labeling if there is a labeling \(l : E(G) \to A^* \) such that for every vertex \(v \in V(G) \), the sum of values of all edges incident with \(v \) is equal to the same constant; that is, \(l^+(v) = c \) for sum fixed \(c \in A \). A magic graph introduced by J. Sedlacek [5, 6]. An \(h \)-magic graph \(G \) is said to be \(\mathbb{Z}_h \)-magic graph if we choose the group \(A \) as \(\mathbb{Z}_h \) the group of integers mod \(h \). These \(\mathbb{Z}_h \)-magic graph are referred as \(h \)-magic graphs. Clearly, if a graph is \(h \)-magic, then it is not necessary \(k \)-magic (\(k \neq h \)). An \(h \)-magic graph \(G \) is said to be \(h \)-zero-sum if there is a magic labeling of \(G \) in \(\mathbb{Z}_h \) which induces a vertex labeling with sum zero. The null set of a graph \(G \), denoted by \(N(G) \), is the set of all natural numbers \(h \in \mathbb{N} \), such that \(G \) admits an \(h \)-zero-sum magic labeling. Let \(G \) be a graph and \(l : E(G) \to A^* \) be a labeling on the edge set of \(G \) and \(A \) be an abelian group. The set of all constant integers such that \(\sum_{u \in N(v)} l(uv) = c \), for each \(u \in N(v) \), where \(N(v) \) denotes

MSC(2010): Primary: 05C15; Secondary: 20D60.

Keywords: Index Set, Magic, Zero-Sum, Null Set.

Received: 23 September 2012, Accepted: 19 January 2014.

*Corresponding author.
the set of adjacent vertices to vertex \(v \), is called the index set of \(G \) and denoted by \(\text{In}_A(G) \). The join \(G \lor H \) of disjoint graph \(G \) and \(H \) is the graph obtained from \(G + H \) by joining each vertex of \(G \) to each vertex of \(H \). Tao-Ming Wang and Shi-wei Hu \cite{7} in (2011), determined the index set of regular graphs for an abelian group \(\mathbb{Z} \). A detailed study about zero-sum magic graphs and their null sets done by E. Salehi in \cite{1, 2}. It was determined in \cite{3, 4} null set of wheels and fans that is, \(0 \in \text{In}_{\mathbb{Z}_h}(G) \), where \(G \) is the above graphs. In this paper we determine the index set of wheels and fans.

2. Index Set of Wheels

For \(n \geq 3 \), wheel on \(n+1 \) vertices, denoted by \(W_n \) and is defined to be \(C_n \lor K_1 \), where \(C_n \) is the cycle of order \(n \). The null set of wheels determined in \cite{3}.

Theorem 2.1. For any positive integer \(n \geq 3 \), \(N(W_n) = \begin{cases} \mathbb{N} \setminus \{2\} & n = 0 \pmod{3}; \\ \mathbb{N} \setminus \{2, 3\} & \text{otherwise}. \end{cases} \)

Let \(G \) be a graph. It is obvious that \(1 \in \text{In}_{\mathbb{Z}_h}(G) \) if and only if the degree of every vertex is odd. Therefore, since the degree set of the \(W_n \) is \(\{3, n\} \), \(W_n \) has 2-magic labeling with index 1, if and only if \(n \) is odd. First we need the following.

Remark 2.2. If \(G \) is a graph and \(c \in \text{In}_{\mathbb{Z}_h}(G) \), then we have

\[
2 \sum_{e \in E(G)} l(e) = c \mid V(G) \mid \pmod{h}.
\]

Lemma 2.3. For any positive integers \(n \) and \(h \geq 3 \), \(\text{In}_{\mathbb{Z}_h}(C_n) = \begin{cases} \mathbb{Z}_h \setminus \{0\} & n \text{ is odd}; \\ \mathbb{Z}_h & n \text{ is even}. \end{cases} \)

Proof. First suppose that \(n \) is odd. Note that in any \(h \)-magic labeling of an odd cycle, the edges should have the same value. So, \(0 \notin \text{In}_{\mathbb{Z}_h}(C_n) \). Let \(h = 2k + 1 \) and \(x \in \mathbb{Z}_h \setminus \{0\} \). We assign value \((k + 1)x \) to all edges of \(C_n \). So, \(x \in \text{In}_{\mathbb{Z}_h}(C_n) \) and thus \(\text{In}_{\mathbb{Z}_h}(C_n) = \mathbb{Z}_h \setminus \{0\} \).

Now, assume that \(n \) is even and \(x \in \mathbb{Z}_h \). If assign value 2 and \(-1\) to all edges of \(C_n \), alternatively, then \(1 \in \text{In}_{\mathbb{Z}_h}(C_n) \). Suppose that \(x \neq 1 \). We assign the values \(x - 1 \) and 1, alternatively to all edges of \(C_n \). So, \(x \in \text{In}_{\mathbb{Z}_h}(C_n) \), as desired. \(\square \)

Let \(u, u_1, \ldots, u_n \) be the vertices of \(W_n \) and assume that \(u_1, \ldots, u_n \) are arranged clockwise around a circle and \(u \) is the center vertex of wheel. In some cases, for convenience, we way use \(u_{n+1} \) for \(u_1 \) and \(u_{-1}, u_0 \) for \(u_{n-1}, u_n \), respectively. Now, we have the following theorem.

Theorem 2.4. If \(n \geq 3 \) and \(h \geq 4 \) are positive integers, then

\[
\text{In}_{\mathbb{Z}_h}(W_n) = \begin{cases} 2\mathbb{Z}_h & \text{if } n \text{ and } h \text{ are even}; \\ \mathbb{Z}_h & \text{otherwise}. \end{cases}
\]

Proof. We would like to define a function \(l : E(W_n) \to \mathbb{Z}_h \setminus \{0\} \) such that \(l \) is an edge magic labeling of \(W_n \). By Theorem \(
\begin{align*}
\text{In}_{\mathbb{Z}_h}(W_n) & = 0 \in \text{In}_{\mathbb{Z}_h}(W_n) \text{. We consider two cases:}
\end{align*}
\)
Case 1. Suppose that \(n = 2r + 1 \). We consider two subcases:

Subcase (i) Let \(r \) be odd. The labeling of the edges is done as follows:
\[
l(uu_i) = 1, \text{ for } 1 \leq i \leq r + 1 \text{ and } l(uu_i) = -1, \text{ for } r + 2 \leq i \leq n.
\]
Also, define:
\[
l(u_iu_{i+1}) = \begin{cases}
-1 & 1 \leq i \leq r + 1 \text{ and } i \text{ is odd;} \\
1 & 1 \leq i \leq r + 1 \text{ and } i \text{ is even or } r + 2 \leq i \leq n.
\end{cases}
\]
Thus, \(l^+(u) = r + 1 + r(-1) = 1 \mod h \) and obviously, for every \(i \), \(l^+(u_i) = 1 \). Therefore, \(1 \in \text{In}_{Z_h}(W_n) \) and \(\text{In}_{Z_h}(W_n) = Z_h \), as desired.

Subcase (ii) If \(r \) is even, then assign value 2 to \(uu_1 \) and \(uu_2 \) and define:
\[
l(uu_i) = -1, \text{ for } 3 \leq i \leq r + 3 \text{ and } l(uu_i) = 1, \text{ for } r + 4 \leq i \leq n.
\]
Also, define:
\[
l(u_1u_2) = -2 \text{ and } l(u_iu_{i+1}) = \begin{cases}
1 & 2 \leq i \leq r + 3 \text{ or } r + 4 \leq i \leq n \text{ and } i \text{ is odd;} \\
-1 & r + 4 \leq i \leq n \text{ and } i \text{ is even.}
\end{cases}
\]
Thus, \(l^+(u) = 4 + (r + 1)(-1) + r - 2 = 1 \mod h \) and obviously, for every \(i \), \(l^+(u_i) = 1 \). Now, if \(h \) is odd, then \(1 \in \text{In}_{Z_h}(W_n) \) and \(\text{In}_{Z_h}(W_n) = Z_h \). If \(h = 2k \), then the above edge labeling of \(W_n \) shows that \(\text{In}_{Z_h}(W_n) = 2Z_h \setminus \{k\} \). Also, if assign value \(k \) to all edges of \(W_n \), then \(k \in \text{In}_{Z_h}(W_n) \). Therefore, \(\text{In}_{Z_h}(W_n) = Z_h \), as desired.

Case 2. Let \(n = 2r \) and \(x = 2t \) be a non-zero element of \(Z_h \). We consider two subcases:

Subcase (i) If \(r \) is even, then the labeling done as follows:
\[
l(uu_1) = l(uu_2) = x, \ l(uu_3) = l(uu_4) = -t.
\]
\[
l(uu_5) = l(uu_6) = 1, \ l(uu_7) = l(uu_8) = -1, \ldots, \ l(uu_{n-3}) = l(uu_{n-2}) = 1 \text{ and } \ l(uu_{n-1}) = l(uu_n) = -1,
\]
and define:
\[
l(u_1u_2) = -x, \ l(u_3u_4) = t, \ l(u_5u_6) = -1, \ l(u_7u_8) = 1, \ldots, \ l(u_{n-3}u_{n-2}) = -1 \text{ and } l(u_{n-1}u_n) = 1.
\]
Also, assign value \(x \) to the remaining edges of \(W_n \).

Subcase (ii) If \(r \) is odd, then the labeling done as follows:
\[
l(uu_1) = l(uu_2) = t \text{ and } \ l(uu_3) = l(uu_4) = 1, \ l(uu_5) = l(uu_6) = -1, \ldots, \ l(uu_{n-3}) = l(uu_{n-2}) = 1 \text{ and } \ l(uu_{n-1}) = l(uu_n) = -1.
\]
Also, define:
\[
l(u_1u_2) = -t, \ l(u_3u_4) = -1, \ l(u_5u_6) = 1, \ldots, \ l(u_{n-3}u_{n-2}) = -1 \text{ and } l(u_{n-1}u_n) = 1 \text{ and assign value } \ x \text{ to the remaining edges of } W_n.
First suppose that \(h \) is odd and \(t = 1 \). Then Subcases (i) and (ii) show that \(2 \in \text{In}_{\mathbb{Z}_h}(W_n) \) and so, \(\text{In}_{\mathbb{Z}_h}(W_n) = \mathbb{Z}_h \). Now, assume that \(h \) is even. If \(c \in \mathbb{Z}_h \setminus \{0\} \) is odd, then by Remark 2.2 we have \(c \not\in \text{In}_{\mathbb{Z}_h}(W_n) \) and Subcases (i) and (ii) show that \(\text{In}_{\mathbb{Z}_h}(W_n) = 2\mathbb{Z}_h \). The proof is complete. \(\square \)

Remark 2.5. If \(h = 3 \) and \(n \geq 3 \) is a positive integer, then Theorem 2.1 and the proof of Theorem 2.4 imply that:

\[
\text{In}_{\mathbb{Z}_3}(W_n) = \begin{cases}
\mathbb{Z}_3 \setminus \{0\} & n \not\equiv 0 \pmod{3}; \\
\mathbb{Z}_3 & n \equiv 0 \pmod{3}.
\end{cases}
\]

3. Index Set of Fans

For \(n \geq 2 \), fan on \(n+1 \) vertices, denoted by \(F_n \), and is defined to be \(P_n \lor K_1 \), where \(P_n \) is the path of order \(n \). The null set of fans determined in [3].

Theorem 3.1. \(N(F_2) = 2\mathbb{N} \), \(N(F_3) = 2\mathbb{N} \setminus \{2\} \) and for any \(n \geq 4 \),

\[
N(F_n) = \begin{cases}
\mathbb{N} \setminus \{2\} & n \equiv 1 \pmod{3}; \\
\mathbb{N} \setminus \{2, 3\} & \text{otherwise}.
\end{cases}
\]

Remark 3.2. Note that the degree set of \(F_n \) is \(\{2, 3, n\} \). So, it has no 2-magic labeling with index 1. On the other hand by Theorem 3.1 we have \(\emptyset \not\in \text{In}_{\mathbb{Z}_2}(F_n) \). Therefore, \(\text{In}_{\mathbb{Z}_2}(F_n) = \emptyset \). Also, \(F_2 = C_3 \) and by Lemma 2.3 \(\text{In}_{\mathbb{Z}_h}(F_2) = \mathbb{Z}_h \setminus \{0\} \), where \(h \) is a positive integer.

For the general case, let \(u_1 \sim u_2 \sim \ldots \sim u_n \) be the vertices of the path \(P_n \) and \(u \) be the central vertex of the fan. We call the edges \(uu_i \) (\(1 \leq i \leq n \)) blades of the fan.

Lemma 3.3. Let \(h \geq 3 \) be a positive integer. Then

\[
\text{In}_{\mathbb{Z}_h}(F_3) = \begin{cases}
\emptyset & h \text{ is odd}; \\
\mathbb{Z}_h & h \text{ is even}.
\end{cases}
\]

First suppose that \(h \) is odd and \(l : E(F_3) \to \mathbb{Z}_h \setminus \{0\} \) is an \(h \)-magic labeling with index \(c \) of \(F_3 \), that illustrated in Figure 1, where \(a, b \neq c \) and \(a, b, z \in \mathbb{Z}_h \setminus \{0\} \). We should have \(a + b + z = c \), \(z + 2c - (a + b) = c \).

![Figure 1](image)

If we add these equations, then we get \(2z = 0 \pmod{h} \). Thus \(z = 0 \pmod{h} \), a contradiction. Now, assume that \(h = 2k \) and \(x \) is a non-zero element of \(\mathbb{Z}_h \). If \(x = 2t \) (for some \(t \)), then consider Figure 2 Part (a) and if \(x = 2t + 1 \) (for some \(t \)), then consider Figure 2 Part (b). Thus, \(x \in \text{In}_{\mathbb{Z}_h}(F_3) \) and so, \(\text{In}_{\mathbb{Z}_h}(F_3) = \mathbb{Z}_h \).
The proof is complete.

Lemma 3.4. For a positive integer \(h \geq 3 \),

\[
\text{In}_{Z_h}(F_4) = \begin{cases}
\{0\} & h = 3; \\
Z_h & h \neq 3 \text{ is odd}; \\
2Z_h & \text{otherwise}.
\end{cases}
\]

Proof. By Theorem 3.1, we have \(0 \in \text{In}_{Z_h}(F_4) \). We consider three cases:

Case 1. Suppose that \(h = 3 \) and \(1 \in \text{In}_{Z_3}(F_4) \). Since \(d(u) = 4 \), four edges incident with \(u \) have value \(\{2, 2, 2, 1\} \) or \(\{1, 1, 1, 1\} \). Since, \(d(u_1) = d(u_4) = 2 \), thus, \(l(uu_1) \neq 1 \) and \(l(uu_4) \neq 1 \). So, 4 edges incident with \(u \) have value \(\{2, 2, 2, 1\} \). Therefore, \(l(uu_1) = l(uu_4) = 2 \). With no loss of generality suppose that \(l(uu_2) = 2 \). So, we have \(l(u_1u_2) = 2 \). Therefore, \(l(u_2u_3) = 0 \), a contradiction. Also, if \(2 \in \text{In}_{Z_3}(F_4) \) and we multiply the values of all edges of \(F_4 \) in 2, then we obtain that \(1 \in \text{In}_{Z_3}(F_4) \), a contradiction. Therefore, \(2 \notin \text{In}_{Z_3}(F_4) \) and so, \(\text{In}_{Z_3}(F_4) = \{0\} \).

Case 2. Let \(3 \neq h = 2k + 1 \) and \(x \) be a non-zero element of \(Z_h \). If \(x = 2t \) and \(x \neq -2, 2, 4 \), then Figure 3 Part (a) shows that \(x \in \text{In}_{Z_h}(F_4) \) and if \(x = 2t + 1 \) and \(x \neq -1, 1 \), then Figure 3 Part (b) shows that \(x \in \text{In}_{Z_h}(F_4) \).

If \(x = 1 \), then Figure 4, Part (a) shows that \(1 \in \text{In}_{Z_h}(F_n) \) and if we multiply all values of edges in value \(-1 \), then we obtain that \(-1 \in \text{In}_{Z_h}(F_4) \). If \(x = 2 \), then Figure 4, Part (b) shows that \(2 \in \text{In}_{Z_h}(F_4) \) and if we multiply all values of edges in value \(-1 \) and 2, respectively, then we obtain that \(-2 \in \text{In}_{Z_h}(F_4) \) and \(4 \in \text{In}_{Z_h}(F_4) \), respectively. Therefore, \(\text{In}_{Z_h}(F_4) = Z_h \), as desired.
Case 3. Let $h = 2k$. If $c \in \mathbb{Z}_h \setminus \{0\}$ is odd, then by Remark 2.2 $c \notin \text{In}_{Z_h}(F_4)$. Let $x = 2t$ be a non-zero element of \mathbb{Z}_h. Figure 5 shows that $x \in \text{In}_{Z_h}(F_4)$. Therefore, $\text{In}_{Z_h}(F_4) = 2\mathbb{Z}_h$.

The proof is complete. □

Lemma 3.5. For a positive integer $h \geq 3$, $\text{In}_{Z_h}(F_5) = \begin{cases} \emptyset & h = 3; \\ \mathbb{Z}_h & h \neq 3. \end{cases}$

Proof. By Theorem 3.1 we have $0 \notin \text{In}_{Z_3}(F_5)$ and if $h \neq 3$, then $0 \in \text{In}_{Z_h}(F_5)$. Let x be a non-zero element of \mathbb{Z}_h. We would like to define a function $l : E(F_5) \to \mathbb{Z}_h \setminus \{0\}$ such that l is an edge magic labeling of F_5. We consider three cases:

Thus, $\text{In}_{Z_h}(F_5) = \mathbb{Z}_h$ and the proof is complete. □

Theorem 3.6. If $n \geq 6$ and $h \geq 4$ are positive integers, then

$$
\text{In}_{Z_h}(F_n) = \begin{cases} 2\mathbb{Z}_h & n \text{ and } h \text{ are both even;} \\ \mathbb{Z}_h & \text{otherwise.} \end{cases}
$$

Proof. By Theorem 3.1 $0 \in \text{In}_{Z_3}(F_n)$. Let x be a non-zero element of \mathbb{Z}_h. We would like to define a function $l : E(F_n) \to \mathbb{Z}_h \setminus \{0\}$ such that l is an edge magic labeling of F_n. We consider three cases:
Case 1. Let $n = 2r + 1$ and r be even. First suppose that $x \neq 2, -2$. We label the edges of F_n as follows:

\[
l(uu_1) = l(uu_n) = 2, \quad l(uu_{r+1}) = x \quad \text{and} \quad -l(uu_i) = l(uu_{n-i+1}) = 1, \quad \text{for} \quad 2 \leq i \leq r.
\]

Also, define:

\[
l(u_iu_{i+1}) = \begin{cases}
 x + 2 & 1 \leq i \leq r \quad \text{and} \quad i \text{ is odd;} \\
 -1 & 1 \leq i \leq r \quad \text{and} \quad i \text{ is even;} \\
 1 & r + 1 \leq i \leq n \quad \text{and} \quad i \text{ is odd;} \\
 x - 2 & r + 1 < i < n \quad \text{and} \quad i \text{ is even.}
\end{cases}
\]

So, $l^+(u) = 2 - 2 + x + (r - 1)(1) + (r - 1)(-1) = x \pmod{h}$ and obviously, for every i, $l^+(u_i) = x$.

Now, assume that $x = 2$. Label all edges of F_n as follows:

\[
l(uu_{n-1}) = l(uu_i) = -1, \quad \text{for} \quad 2 \leq i \leq r - 2, \quad l(uu_{r+1}) = -2 \quad \text{and} \quad \text{assign value 1 to the remaining edges. Also, define:}
\]

\[
l(u_iu_{i+1}) = \begin{cases}
 1 & 1 \leq i \leq r - 2 \quad \text{and} \quad i \text{ is odd;} \\
 2 & r + 1 \leq i \leq n - 2 \quad \text{and} \quad i \text{ is odd or} \quad 1 \leq i \leq r - 2 \quad \text{and} \quad i \text{ is even;} \\
 -1 & r + 1 \leq i \leq n - 2 \quad \text{and} \quad i \text{ is even,}
\end{cases}
\]

and $l(u_{r-1}u_r) = -1, \quad l(u_ru_{r+1}) = 1 \quad \text{and} \quad l(u_{n-1}u_n) = 1$.

So, $l^+(u) = -2 - 1 + (r - 3)(-1) + (r + 2)(1) = 2 \pmod{h}$ and obviously, for every i, $l^+(u_i) = x$. Also, if we multiply all values of edges in -1, then we obtain that $-2 \in \text{Int}_n(F_n)$, as desired.

Case 2. Let $n = 2r + 1$ and r be odd. First suppose that $x \neq 2$. Label all edges of F_n as follows:

\[
l(uu_1) = 2, \quad l(uu_n) = x - 2, \quad l(uu_{n-1}) = -2, \quad l(uu_i) = 1, \quad \text{for} \quad 2 \leq i \leq r + 1 \quad \text{and} \quad l(uu_i) = -1, \quad \text{for} \quad r + 2 \leq i \leq n - 2.
\]

Also, define:

\[
l(u_iu_{i+1}) = \begin{cases}
 1 & 1 \leq i \leq n - 2 \quad \text{and} \quad i \text{ is even;} \\
 x - 2 & 1 \leq i \leq r \quad \text{and} \quad i \text{ is odd;} \\
 x & r + 1 \leq i \leq n - 1 \quad \text{and} \quad i \text{ is odd,}
\end{cases}
\]

and $l(u_{n-1}u_n) = 2$.

So, $l^+(u) = x - 2 + 2 - 2 + r + (r - 2)(-1) = x \pmod{h}$ and obviously, for every i, $l^+(u_i) = x$.

Now, assume that $x = 2$. Label all edges of F_n as follows:

\[
l(uu_1) = l(uu_n) = -l(uu_2) = -l(uu_{n-1}) = 1, \quad -l(uu_r) = l(uu_{r+1}) = l(uu_{r+2}) = 2, \quad l(uu_i) = 2, \quad \text{for} \quad 3 \leq i \leq r - 1 \quad \text{and} \quad l(uu_i) = -2, \quad \text{for} \quad r + 3 \leq i \leq n - 2.
\]

Also, define:

\[
l(u_1u_2) = l(u_{n-1}u_n) = 1, \quad l(u_{r+1}u_{r+2}) = -2 \quad \text{and} \quad \text{for} \quad 2 \leq i \leq r - 1,
\]

\[
l(u_iu_{i+1}) = \begin{cases}
 2 & i \text{ is even;} \\
 -2 & i \text{ is odd.}
\end{cases}
\]

Also, assign value 2 to the remaining edges and obtain the result.

So, $l^+(u) = 2 - 2 + 4 - 2 + (r - 3)(2) + (r - 3)(-2) = 2 \pmod{h}$ and obviously, for every i, $l^+(u_i) = x$.\]
Case 3. Let $n = 2r$. First suppose that $h = 2k + 1$. We consider two subcases:

Subcase (i) Suppose that r is odd. Define:

\[l(uu_1) = l(uu_n) = k + 1, \quad l(uu_2) = l(uu_{n-1}) = k \] and

\[l(uu_i) = \begin{cases}
 k + 1 & 3 \leq i \leq r + 1; \\
 k & r + 2 \leq i \leq n - 2.
\end{cases} \]

Also, define:

\[l(u_1u_2) = k + 1 \] and

\[l(u_iu_{i+1}) = \begin{cases}
 k & 2 \leq i \leq r + 1 \text{ and } i \text{ is odd}; \\
 k + 1 & r + 2 \leq i \leq n \text{ and } i \text{ is odd}; \\
 1 & 2 \leq i \leq n \text{ and } i \text{ is even}.
\end{cases} \]

So, we have $l^+(u) = 2(k + 1) + 2k + (r - 1)(k + 1) + (r - 3)k = 1 \pmod{h}$ and obviously, for every i, $l^+(u_i) = 1$. Thus, $1 \in \mathbb{I}_{Z_h}(F_n)$ and therefore, $\mathbb{I}_{Z_h}(F_n) = \mathbb{Z}_h$.

Subcase (ii) Suppose that r is even. Assign the value $k + 1$ to uu_1 and uu_n and value 1 to uu_2 and uu_{n-1}. Also define,

\[l(uu_i) = \begin{cases}
 k & 3 \leq i \leq r + 2; \\
 k + 1 & r + 3 \leq i \leq n - 2.
\end{cases} \]

Also, define:

\[l(u_1u_2) = l(u_{n-1}u_n) = k + 1 \] and

\[l(u_iu_{i+1}) = \begin{cases}
 2 & 2 \leq i \leq r + 2 \text{ and } i \text{ is odd}; \\
 1 & r + 3 \leq i \leq n - 2 \text{ and } i \text{ is odd}; \\
 k & 2 \leq i \leq n - 2 \text{ and } i \text{ is even}.
\end{cases} \]

So, $l^+(u) = 2(k + 1) + 2k + (r - 4)(k + 1) = 1 \pmod{h}$ and obviously, for every i, $l^+(u_i) = 1$. Thus, $1 \in \mathbb{I}_{Z_h}(F_n)$ and so, $\mathbb{I}_{Z_h}(F_n) = \mathbb{Z}_h$.

Now, assume that $h = 2k$. If $c \in \mathbb{Z}_h \setminus \{0\}$ is odd, then by Remark 2.2, $c \not\in \mathbb{I}_{Z_h}(F_n)$. Let $x = 2t$. Define:

\[l(uu_1) = l(uu_n) = t + k \] and

\[l(uu_i) = k, \text{ for } 2 \leq i \leq n - 1. \] Also, define:

\[l(u_iu_{i+1}) = \begin{cases}
 t + k & i \text{ is odd}; \\
 t & i \text{ is even}.
\end{cases} \]

Therefore, $x \in \mathbb{I}_{Z_h}(F_n)$ and so, $\mathbb{I}_{Z_h}(F_n) = 2\mathbb{Z}_h$. The proof is complete. \(\square\)

Finally, we have the following remark.

Remark 3.7. If $h = 3$ and $n \geq 6$ are positive integers, then Theorem 3.1 and the proof of Theorem 3.6 imply that:

\[\mathbb{I}_{Z_3}(F_n) = \begin{cases}
 \mathbb{Z}_3 \setminus \{0\} & n \not\equiv 1 \pmod{3}; \\
 \mathbb{Z}_3 & n \equiv 1 \pmod{3}.
\end{cases} \]
REFERENCES

Mohammad Javad Nikmehr
Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran

Samaneh Bahramian
Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran