• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Advisory Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Transactions on Combinatorics
Articles in Press
Current Issue
Journal Archive
Volume Volume 8 (2019)
Volume Volume 7 (2018)
Volume Volume 6 (2017)
Volume Volume 5 (2016)
Volume Volume 4 (2015)
Volume Volume 3 (2014)
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 2 (2013)
Volume Volume 1 (2012)
Alwardi, A., Ebadi, K., Manrique, M., Soner, N. (2014). Semi-strong split domination in graphs. Transactions on Combinatorics, 3(2), 51-63. doi: 10.22108/toc.2014.4857
Anwar Alwardi; Karam Ebadi; Martin Manrique; Nsndappa Soner. "Semi-strong split domination in graphs". Transactions on Combinatorics, 3, 2, 2014, 51-63. doi: 10.22108/toc.2014.4857
Alwardi, A., Ebadi, K., Manrique, M., Soner, N. (2014). 'Semi-strong split domination in graphs', Transactions on Combinatorics, 3(2), pp. 51-63. doi: 10.22108/toc.2014.4857
Alwardi, A., Ebadi, K., Manrique, M., Soner, N. Semi-strong split domination in graphs. Transactions on Combinatorics, 2014; 3(2): 51-63. doi: 10.22108/toc.2014.4857

Semi-strong split domination in graphs

Article 8, Volume 3, Issue 2, June 2014, Page 51-63  XML PDF (400 K)
Document Type: Research Paper
DOI: 10.22108/toc.2014.4857
Authors
Anwar Alwardi1; Karam Ebadi2; Martin Manrique 2; Nsndappa Soner1
1Department of Studies in Mathematics, University of Mysore, Mysore-570006 Karnataka, India
2National Centre for Advanced Research in Discrete Mathematics (n-CARDMATH), Kalasalingam University, Anand Nagar, Krishnankoil-626126, India
Abstract
Given a graph $G=(V,E)$‎, ‎a dominating set $D\subseteq V$ is called a semi-strong split dominating set of $G$ if $|V\setminus D|\geq1$ and the maximum degree of the induced subgraph $\langle V\setminus D \rangle$ is $1$‎. ‎The cardinality of a minimum semi-strong split dominating set (SSSDS) of $G$ is the semi-strong split domination number of $G$‎, ‎denoted $\gamma_{sss}(G)$‎. ‎In this paper‎, ‎we introduce the concept and prove several results regarding it‎.
Keywords
split domination; strong split domination; tree
Main Subjects
05C07 Vertex degrees; 05C40 Connectivity; 05C69 Dominating sets, independent sets, cliques
References
G. Chartrand and L. Lesniak (1996). Graphs $&$ Digraphs. Third edition, Chapman $&$ Hall, London.
J. F. Fink, M. S. Jacobson, L. Kinch and J. Roberts (1985). On graphs having domination number half their order. Period. Math. Hungar. 16, 287-293
V. R. Kulli and B. Janakiram (1997). The split domination number of a graph. Graph Theory Notes N. Y.. 32, 16-19
V. R. Kulli and B. Janakiram (2006). The strong split domination number of a graph. Acta Cienc. Indica. 32, 715-720
T. W. Haynes, S. T. Hedetniemi and P. J. Slater (1998). Fundamentals of Domination in Graphs. Marcel Dekker, Inc., New York.
T. W. Haynes, S. T. Hedetniemi and P. J. Slater (1998). Domination in Graphs: Advanced Topics. Marcel Dekker, Inc., New York.
C. Payan and N. H. Xuong (1982). omination-balanced graphs. J. Graph Theory. 6, 23-32
Statistics
Article View: 3,943
PDF Download: 3,152
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.