Alwardi, A., Ebadi, K., Manrique, M., Soner, N. (2014). Semi-strong split domination in graphs. Transactions on Combinatorics, 3(2), 51-63. doi: 10.22108/toc.2014.4857
Anwar Alwardi; Karam Ebadi; Martin Manrique; Nsndappa Soner. "Semi-strong split domination in graphs". Transactions on Combinatorics, 3, 2, 2014, 51-63. doi: 10.22108/toc.2014.4857
Alwardi, A., Ebadi, K., Manrique, M., Soner, N. (2014). 'Semi-strong split domination in graphs', Transactions on Combinatorics, 3(2), pp. 51-63. doi: 10.22108/toc.2014.4857
Alwardi, A., Ebadi, K., Manrique, M., Soner, N. Semi-strong split domination in graphs. Transactions on Combinatorics, 2014; 3(2): 51-63. doi: 10.22108/toc.2014.4857
1Department of Studies in Mathematics, University of Mysore, Mysore-570006 Karnataka, India
2National Centre for Advanced Research in Discrete Mathematics (n-CARDMATH), Kalasalingam University, Anand Nagar, Krishnankoil-626126, India
Abstract
Given a graph $G=(V,E)$, a dominating set $D\subseteq V$ is called a semi-strong split dominating set of $G$ if $|V\setminus D|\geq1$ and the maximum degree of the induced subgraph $\langle V\setminus D \rangle$ is $1$. The cardinality of a minimum semi-strong split dominating set (SSSDS) of $G$ is the semi-strong split domination number of $G$, denoted $\gamma_{sss}(G)$. In this paper, we introduce the concept and prove several results regarding it.