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Abstract. Given a graph G = (V,E), a dominating set D ⊆ V is called a semi-strong split dominating

set of G if |V \D| ≥ 1 and the maximum degree of the induced subgraph 〈V \D〉 is 1. The cardinality of

a minimum semi-strong split dominating set (SSSDS) of G is the semi-strong split domination number

of G, denoted γsss(G). In this paper, we introduce the concept and prove several results regarding it.

1. Introduction

By a graph G = (V,E) we mean a finite and undirected graph with neither loops nor multiple

edges. The order of G is n = |V |, and the size of G is m = |E|. For any vertex v ∈ V , the open

neighborhood of v is the set N(v) = {u ∈ V : uv ∈ E}, and the closed neighborhood of v is the

set N [v] = N(v) ∪ {v}. If u ∈ N(v), we say that u and v are adjacent. The degree of v in G

is degG(v) = |N(v)|. When G is clear we will write simply deg(v). The maximum degree of G is

∆(G) = max{deg(v) : v ∈ V }, and the minimum degree of G is δ(G) = min{deg(v) : v ∈ V }. A

pendant vertex is a vertex v ∈ V such that deg(v) = 1. The stem of G is the set of vertices adjacent to

at least one pendant vertex. Given a set S ⊆ V and v ∈ S, a vertex u ∈ V \S is an (external) private

neighbor of v (with respect to S) if N(u) ∩ S = {v}. Given a graph G = (V,E) and {u, v} ⊆ V ,

the distance between u and v is the minimum length of a path (u, . . . , v), and is denoted d(u, v). A

connected component of G is a maximal (by inclusion) connected subgraph of G. From now on it will

be called just component. A graph G is totally disconnected if the cardinality of each component of G

is 1 and G has at least two components.
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For a given positive integer t ≥ 2, a wounded spider is a star K1,t with at most t − 1 of its edges

subdivided once, and a healthy spider is a star K1,t with all of its edges subdivided once.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2) such that V1 ∩ V2 = ∅, the join of G1 and G2 is

G1 +G2 = (V1 ∪ V2, E
′), where E′ = E1 ∪ E2 ∪ {uv : u ∈ V1, v ∈ V2}. Let G1 and G2 be two graphs

such that V (G1) ∩ V (G2) = ∅, with |V (G1)| = n1. The corona G1 ◦ G2 of G1 and G2 is the graph

obtained by taking one copy of G1 and n1 copies of G2, and then joining the ith vertex of G1 to every

vertex in the ith copy of G2. If G2 is isomorphic to K1, we say that G is a corona graph.

Given an arbitrary graph G, the trestled graph of index k, denoted by Tk(G), is the graph obtained

from G by adding k-copies of K2 for each edge uv of G, and joining u and v to the respective end

vertices of each K2. Let G = (V,E) be a graph. A set D ⊆ V is a dominating set of G if for every

vertex v in V \D, there exists a vertex u in D such that uv ∈ E. The domination number γ(G) of

G is the minimum cardinality of a dominating set of G. The concept of domination in graphs and

several of its variations are well studied in graph theory. A thorough review of domination appears in

[5, 6]. A set S ⊆ V is called independent if no two vertices in S are adjacent, and β0(G) denotes the

maximum cardinality among the independent sets of G. The independent domination number i(G)

is the minimum cardinality of a set I ⊆ V which is both independent and dominating in G. A set

C ⊆ V is a vertex covering of G if every edge has at least one vertex in C. The vertex covering number

α0(G) denotes the minimum cardinality of a vertex covering of G. A set F ⊆ E is a matching of G if

for every {e, f} ⊆ F we have e ∩ f = ∅. The edge independence number β1(G) denotes the maximum

cardinality of a matching in G. A clique of G is a complete graph which is a subgraph of G. A graph

is a split graph if its vertices can be partitioned into a clique and an independent set. We refer to [1]

for graph theory notions and terminology not described in this work.

A dominating set D is a split dominating set if the induced subgraph 〈V \D〉 is disconnected. The

split domination number γs(G) of a graph G is the minimum cardinality of a split dominating set

of G. A γs-set is a minimum split dominating set. These concepts were introduced by Kulli and

Janakiram in [3]. A dominating set D is a strong split dominating set if the induced subgraph 〈V \D〉
is totally disconnected. The strong split domination number γss(G) is the minimum cardinality of a

strong split dominating set of G. A γss-set is a minimum strong split dominating set. These concepts

were introduced by Kulli and Janakiram in [4]. Observe that both a γs-set and a γss-set exist if, and

only if, the graph has either one component which is not complete or two non-trivial components.

In this paper, we study a variant of domination. A dominating set D ⊆ V is called a semi-strong

split dominating set (SSSDS) if |V \D| ≥ 1 and the maximum degree of the induced subgraph 〈V \D〉
is 1. Thus the induced subgraph 〈V \D〉 is isomorphic to sK1 ∪ tK2, where s and t are non-negative

integers with s > 0 or t > 0. The minimum cardinality of a semi-strong split dominating set of G is the

semi-strong split domination number of G, denoted γsss(G), and an SSSDS of minimum cardinality in

G is a γsss(G)-set. Since every strong split dominating set is an SSSDS, it is clear that γsss(G) exists if,

and only if, G is not totally disconnected. Therefore, whenever γsss(G) exists we have γsss(G) ≤ n−1.
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The concept of semi-strong split domination has interesting applications. As an example, consider

a case of epidemics in a given area. We can model the situation as a graph, where villages are vertices

and two villages are adjacent if there is regular traffic between them. Of course, a desirable situation

is to have a disease-control post in each village of the area, but sometimes it is not possible. A much

weaker option is to make every village lacking disease-control post (unprotected village) adjacent to

at least one village having a post (protected village), that is, to make the set of protected villages

dominating in the graph.

However, there are some intermediate solutions: We may arrange the posts in such a way that

every unprotected village is adjacent only to protected villages, which corresponds to a strong split

dominating set in the graph. If we do not have enough resources for that, we may distribute the

posts so that every unprotected village is adjacent to at most another unprotected village, that is,

we have a post in each vertex of a semi-strong split dominating set. The concept is useful because

there are connected graphs such that γss− γsss is as large as desired (see Proposition 2.7). Of course,

if we do not have enough resources even for that, we may place the posts in the vertices of a split

dominating set, so at least the unprotected villages are split into two non-communicating sets. Again,

this may prove useful since γsss − γs may be as large as desired even for connected graphs, as shown

in Proposition 2.7, and is still better than taking just a dominating set.

Instead of disease-control posts in case of epidemics, we may consider fire-extinguishing teams in

case of a huge forest fire, where the vertices of our graph represent vital points for extinguishing it, or

police stations in a city, where the vertices may represent neighborhoods.

The graph G given in Figure 1 is an example where γ(G), γs(G), γsss(G) and γss(G) are all

different, since G has {v4, v5} as a γ-set, {v1, v4, v8} as a γs-set, {v1, v4, v5, v8} as a γsss-set, and

{v1, v2, v4, v5, v7, v8} as a γss-set. Hence γ(G) = 2, γs(G) = 3, γsss(G) = 4, and γss(G) = 6.
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Take the Petersen graph G = (V,E) as given in Figure 2. Then the set {v1, v
′
2, v
′
3, v4} is an SSSDS

of G, so γsss(G) ≤ 4. Now suppose D ⊆ V (G) is an SSSDS of G with |D| = 3. Since γ(G) = 3, D is

a γ(G)-set of G, so D = N(v) for some v ∈ V (G). Since for every two vertices {u,w} ⊆ V there is an

automorphism f of G such that f(u) = w, we may assume D = N(v1), but then deg〈V \D〉(v4) = 2, so

D is not an SSSDS. Therefore, γsss(G) = 4.
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Theorem 1.1. [4] For any graph G such that γs(G) exists, γ(G) ≤ γs(G) ≤ γss(G).

Theorem 1.2. [5] For any graph G, d n
∆(G)+1e ≤ γ(G) ≤ n−∆(G).

Theorem 1.3. [2], [7] Let G be a connected graph. Then γ(G) = n(G)/2 if, and only if, G is the

corona graph of any connected graph J or G is isomorphic to the cycle C4.

2. Main results

In the following proposition, we establish some basic results. The proofs are straightforward and

are therefore omitted.

Proposition 2.1.

(1) For the complete graph Kn, γsss(Kn) = n− 2.

(2) For the path Pn, γsss(Pn) = dn3 e.
(3) For the cycle Cn, γsss(Cn) = dn3 e.
(4) For the wheel Wn = Cn−1 +K1 of order n ≥ 4, γsss(Wn) = dn3 e+ 1.

(5) For the complete multipartite graph Kn1,n2,...,nt with 2 ≤ n1 ≤ n2 ≤ · · · ≤ nt, γsss(Kn1,n2,...,nt) =

n1 + n2 + · · ·+ nt−1.

(6) Let G be any bipartite graph with bipartition V (G) = V1 ∪V2. Then γsss(G) ≤ min{|V1|, |V2|}.
(7) Let G be any connected graph of order n ≥ 3. Then γsss(G) = 1 if, and only if, G is isomorphic

to K1 + (sK1 ∪ tK2) for some integers s, t ≥ 0.

(8) Let G = (V,E) be a non-trivial connected graph. If there exists v ∈ V (G) with deg(v) = ∆(G)

such that the induced subgraph 〈N(v)〉 is isomorphic to sK1 ∪ tK2 for some integers s, t ≥ 0,

then γsss(G) ≤ n−∆(G).

Proposition 2.2. Let G be any connected graph of order n ≥ 3, let p be the maximum length of a

path in G, and let c be the maximum length of a cycle in G. Then

(1) dp+1
3 e ≤ γsss(G) ≤ n− b2p+2

3 c, and the bounds are sharp.

(2) d c
3e ≤ γsss(G) ≤ n− b2c

3 c, and the bounds are sharp.

Proof. (i) Let P = (v1, v2, . . . , vp+1) be a path of maximum length in G, and let D be a γsss-set of P .

By (ii) of Proposition 2.1, we have γsss(P ) = |D| = dp+1
3 e. We define S = D ∪ (V (G) \ V (P )), then

it is clear that S is an SSSDS of G, which implies that γsss(G) ≤ |D|+ (n− |V (P )|) = n− b2p+2
3 c.
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Now let S1 be any SSSDS of G. Then S1 has a non-empty intersection with each set of three

consecutive vertices in V (P ), which implies that |S1 ∩ V (P )| ≥ dp+1
3 e, and hence the lower bound

holds. Both equalities are trivially satisfied by any path Pn.

(ii) If G has no cycles, the bounds are trivial. Otherwise, the proof is similar to that of (i). Both

equalities are satisfied by any cycle Cn. �

Notice that for every graph G, c ≤ p + 1. Therefore, in Proposition 2.2 the bounds established in

(i) are better than those of (ii).

Theorem 2.3. Let G be a graph. Then γsss(G) ≤ n− 2 if, and only if, G has either two components

isomorphic to K2 or a component with at least three vertices.

Proof. If G = (V,E) has two components isomorphic to K2, take two vertices u and v, one from each

of such components. If G has a component H with at least three vertices, let u and v be pendant

vertices of a spanning tree T of H. In both cases, V \ {u, v} is an SSSDS of G.

Conversely, take a graph G with neither two components isomorphic to K2 nor a component with

at least three vertices. If G is totally disconnected, γsss(G) does not exist. If G is of the form K2∪sK1

with s ≥ 0, then every SSSDS of G has exactly one vertex from the non-trivial component, plus all

isolated vertices, so γsss(G) = n− 1. �

Corollary 2.4. For any graph G, γsss(G) = n − 1 if, and only if, G is of the form K2 ∪ sK1 with

s ≥ 0.

Next corollary states two Nordhaus-Gaddum type results.

Corollary 2.5. Let G be a graph of order n ≥ 3 which is not complete nor totally disconnected. Then

(1) γsss(G) + γsss(Ḡ) ≤ 2n− 3.

(2) γsss(G) · γsss(Ḡ) ≤ n2 − 3n+ 2.

Furthermore, equality holds only for Kn − e, where e is any edge of Kn and n ≥ 3 (and for its

complement, of course).

Proof. The inequalities follow straightforwardly from Theorem 2.3, since the complement of a dis-

connected graph is always connected. It is clear that equality holds for Kn − e, n ≥ 3 and its

complement. Now let G be a graph such that equality holds. Without loss of generality we may

assume γsss(Ḡ) = n− 1, so Corollary 2.4 implies that Ḡ = K2 ∪ sK1 for s ≥ 0. If s = 0 then Ḡ = K2,

which is complete. If s > 0, G = Kn − e for an edge e of Kn, n ≥ 3. �

Theorem 2.6. Let G be any graph. Then γsss(G) = n− 2 if, and only if,

(1) G is of the form 2K2 ∪ sK1 with s ≥ 0,

(2) G is of the form H ∪ sK1 with s ≥ 0, where H is isomorphic to P3, C3, P4, C4, K4, or K4− e
for an edge e of K4,

(3) G is of the form H ∪ sK1 with s ≥ 0, |H| = p ≥ 5, and δ(H) ≥ p− 2.
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Proof. Let G = (V,E) be a graph with more than one non-trivial component, and such that γsss(G) =

n − 2. If G has more than two non-trivial components, then V minus one vertex from each of such

components is an SSSDS of G of cardinality less than n − 2. If G has a component H of order 3 or

more, then V minus two vertices from H minus one vertex from all other non-trivial components, is

an SSSDS of G of cardinality less than n − 2. Then G is of the form 2K2 ∪ sK1 with s ≥ 0. It is

straightforward that equality holds for all such graphs. It follows that every other graph satisfying

equality has exactly one non-trivial component.

Let G be a totally disconnected graph. Then no SSSDS exists.

Let G be a graph with only one non-trivial component H of order 2. Then Corollary 2.4 implies

that γsss(G) = n− 1.

Let G be a graph with only one non-trivial component H of order 3. Then H is isomorphic to P3

or C3, and clearly γsss(G) = n− 2.

Let G be a graph with only one non-trivial component H of order 4. If H is a star or a C3 plus one

pendant vertex, γsss = 1 = n− 3. Otherwise H is isomorphic to P4, C4, K4, or K4 − e for an edge e

of K4. It is easy to verify that in those cases we have γsss(G) = n− 2.

Let G be a graph with only one non-trivial component H = (V ′, E′) of order p ≥ 5. If δ(H) ≥ p−2,

any three vertices form a P3 or a C3, so Theorem 2.3 implies γsss(G) = n− 2. Assume δ(H) < p− 2;

take v ∈ V ′ of minimum degree and {u,w} ⊆ V ′ \ N(v). If D = V ′ \ {u, v, w} is a dominating set,

then D is an SSSDS of G. Now suppose D is not a dominating set. Since H is connected, both v and

(without loss of generality) u are adjacent to at least one vertex of D, and w is adjacent to u. Take

z ∈ D ∩N(u). If D ∩N(v) 6= {z}, then (D \ {z}) ∪ {u} is an SSSDS of G. If D ∩N(v) = {z}, notice

that since |H| ≥ 5 there is a vertex x ∈ D \ {z}, and H connected implies x ∈ N(u) or x ∈ N(z). It

follows that V ′ \ {v, w, x} is an SSSDS of G. �

Theorem 2.6 implies that the only trees satisfying equality are P3 and P4, and the only cycles

satisfying equality are C3 and C4. Equality holds as well for Kn and Kn −M , where M is any match

of Kn, provided n ≥ 3.

Proposition 2.7. For every positive integer k, there is a connected graph G such that γss − γsss ≥ k
and γsss − γs ≥ k.

Proof. For p ≥ 3, let G be the graph consisting on k cliques of order p sharing a common vertex.

Then γs(G) = 1, γsss(G) = k(p − 3) + 1, and γss(G) = k(p − 2) + 1. So for p = 4 we have

γs(G) = 1, γsss(G) = k + 1, and γss(G) = 2k + 1. �

Theorem 2.8. Let G be a graph such that γs(G) exists. Then γs(G) ≤ γsss(G).

Proof. Since γs(G) exists, G has either a component which is not complete or two components which

are non-trivial. Then γsss(G) exists and Theorem 2.3 implies γsss(G) ≤ n− 2. We consider two cases:

Case 1. γsss(G) ≤ n− 3.

Let D be any γsss(G)-set. Since |V \D| ≥ 3 and every vertex in the induced subgraph 〈V \D〉 has

degree at most 1, then 〈V \D〉 is a disconnected graph. Hence D is a split dominating set of G.
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Case 2. γsss(G) = n− 2.

If G has more than one non-trivial component then every γsss(G)-set is a γs(G)-set, as shown in

the proof of Theorem 2.6. If G has only one non-trivial component H, then H is not complete,

so |V (H)| ≥ 3. This implies that there exist two non-adjacent vertices u, v ∈ V (H) such that

V (G) \ {u, v} is a γsss(G)-set. Since {u, v} is an independent set, we have γs(G) ≤ n− 2. �

Corollary 2.9. Let G be any graph such that γs(G) exists. Then

γ(G) ≤ γs(G) ≤ γsss(G) ≤ γss(G).

Proof. The inequality γ(G) ≤ γs(G) holds by Theorem 1.1. Since every strong split dominating set is

an SSSDS, it follows that γsss(G) ≤ γss(G). Theorem 2.8 implies γs(G) ≤ γsss(G). �

Theorem 2.10. Let T be any tree of order n ≥ 3. Then γsss(T ) ≤ n− ε(T ), where ε(T ) denotes the

number of pendant vertices of T . Furthermore, equality holds if, and only if, every non-pendant vertex

is adjacent to at least one pendant vertex.

Proof. Let T = (V,E) be a tree, and let S be the set of all pendant vertices of T . Then clearly 〈S〉
is an independent set, which implies that V \ S is an SSSDS, and hence γsss(T ) ≤ n− ε(T ). If every

vertex in V \S is adjacent to a vertex in S, it is clear that V \S is a γsss(T )-set, so γsss(T ) = n−ε(T ).

If there is a vertex v ∈ V \ S such that N(v) ∩ S = ∅, then V \ (S ∪ {v}) is an SSSDS of T , which

implies γsss(T ) < n− ε(T ). �

Theorem 2.11. For any tree T , γsss(T ) ≤ n
2 . Equality holds if, and only if, every non-pendant vertex

is adjacent to exactly one pendant vertex.

Proof. Let T = (V,E) be a tree with stem S0, and let L0 be the set of pendant vertices of T . Now

take T1 = 〈V \ (S0∪L0)〉 with stem S1 and set of pendant vertices L1. Repeat till there are no vertices

left, after k steps. Consider the set D =
⋃k

i=0 Si. It is clear that D is a dominating set in T , and

V \D is an independent set, so D is an SSSDS of T . Since trivially |Si| ≤ |Li| for 0 ≤ i ≤ k, we have

|D| ≤ n
2 . The condition for equality then follows from Theorem 1.3 and Corollary 2.9. �

Theorem 2.12. Let G = (V,E) be a graph. An SSSDS D of G is minimal if, and only if, for every

vertex v ∈ D at least one of the following conditions hold:

(1) v is an isolated vertex in 〈D〉.
(2) There exists a vertex u ∈ V \D, for which N(u) ∩D = {v}.
(3) |N(v) ∩ (V \D)| ≥ 2.

(4) v is adjacent to some vertex u ∈ V \D which belongs to a K2 component of the induced subgraph

〈V \D〉.

Proof. Let D be any minimal SSSDS of G and let v ∈ D. Then D \ {v} is not an SSSDS, which

implies that either D \ {v} is not a dominating set or the induced subgraph 〈(V \D) ∪ {v}〉 contains

a vertex of degree at least two. If D \ {v} is not a dominating set, then either v dominates itself or v

has a private neighbor u ∈ V \D, so either (i) or (ii) hold. If the induced subgraph 〈(V \D) ∪ {v}〉
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contains a vertex of degree at least two, then either v is adjacent to at least two vertices in V \D, or

v is adjacent to some vertex u ∈ V \ D which belongs to a K2 component of the induced subgraph

〈V \D〉, so either (iii) or (iv) hold. The converse is straightforward. �

Theorem 2.13. Let G be a graph without isolated vertices. If D is a minimal SSSDS, then V \D is

a dominating set.

Proof. Let D be any minimal SSSDS of G. Suppose V \D is not a dominating set. Then there exists a

vertex u in D such that N(u)∩ (V \D) = ∅. Since G has no isolates, u is dominated by D′ = D \ {u},
and u is an isolated vertex of 〈V \ D′〉. This implies that D′ is an SSSDS of G, contradicting the

minimality of D. Therefore, V \D is a dominating set of G. �

Corollary 2.14. For any graph G without isolated vertices, γsss(G)+γ(G) ≤ n. For a tree T , equality

holds if, and only if, every non-pendant vertex is adjacent to exactly one pendant vertex.

Proof. The inequality follows directly from Theorem 2.13. Now take a tree T such that γsss(T )+γ(T ) =

n. Then Theorem 2.11 implies that γ(T ) = γsss(T ) = n
2 . Conversely, if γ(T ) = n

2 then from Corollary

2.9 and Theorem 2.11 it follows that γsss(T ) = n
2 . Therefore, Theorem 1.3 implies the result. �

Regarding Corollary 2.14, notice that given any graph G without isolates, equality holds for G if,

and only if, it holds for each of its components, so we may restrict ourselves to connected graphs.

Moreover, equality holds whenever γ(G) = n
2 , so Theorem 1.3 implies that the corona graph of every

graph without isolates satisfies equality. However, there are other connected graphs for which equality

holds, like K−p + 2K1 for p even, p ≥ 2, where K−p is the graph resulting from deleting a maximum

matching from Kp. No graph of order 3 satisfies equality, and the only connected graphs of order 4

for which equality holds are C4 and P4.

Corollary 2.15. For any graph G without isolated vertices, γsss(G) ≤ b n∆(G)
∆(G)+1c. The bound is sharp.

Proof. By Theorem 1.2 and Corollary 2.14, d n
∆(G)+1e ≤ γ(G) ≤ n − γsss(G). Hence γsss(G) ≤

b n∆(G)
∆(G)+1c. Equality holds for C4 and P4. �

Theorem 2.16. Let T be any tree. Then γsss(T ) = n−∆(T ) if, and only if, T is a wounded spider.

Proof. Suppose T is a wounded spider. Then it is easy to check that γsss(T ) = n−∆(T ). Conversely,

suppose T is a tree with γsss(T ) = n − ∆(T ). Let v ∈ V (T ) be a vertex of maximum degree. If

V (T )\N [v] = ∅, then T is a starK1,t, t ≥ 1, which is a wounded spider. We assume that there is at least

one vertex in V (T ) \N [v]. Since 〈V (T ) \N [v]〉 is a bipartite graph, we may take a partition (X,Y ) of

V (T )\N [v] such that |X| is maximum. Then X is a maximal independent set of the induced subgraph

〈V (T )\N [v]〉, and X∪{v} is an independent SSSDS of T . Thus n = γsss(T )+∆(T ) ≤ |X|+1+∆(T ),

which implies that Y = ∅, and so V (T ) \N(v) is an independent set. The connectivity of T implies

that each vertex in V (T ) \N [v] is adjacent to exactly one vertex in N(v). Therefore, T is a spider. If

it is healthy, then n = 2∆(T ) + 1 but N(v) is an SSSDS. It follows that at least one vertex in N(v) is

not adjacent to any vertex in V (T ) \N [v], that is, T is a wounded spider. �
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Figure 3: A healthy spider and a wounded spider.

Theorem 2.17. Let G be any graph without isolates. Then γsss(G) ≤ min{n−β0(G), α0(G), 2β1(G)}.

Proof. Let S be an independent set of G with β0(G) vertices. Then the induced subgraph 〈S〉 contains

no edges, and each vertex in S has a neighbor in V \ S, since δ(G) ≥ 1. This implies that V \ S is an

SSSDS of G, and hence γsss(G) ≤ n− β0(G).

Now let S be a minimum vertex cover of G. Then the induced subgraph 〈V \ S〉 is totally discon-

nected, and each vertex in V \S has a neighbor in S, since δ(G) ≥ 1. This implies that S is an SSSDS

of G, and hence γsss(G) ≤ α0(G).

Let M = {ei = uivi : i = 1, 2, . . . , β1} be a maximum matching of G, and let D = {ui, vi : i =

1, 2, . . . , β1}. Since G has no isolates, M has at least one edge in each component of G. Suppose

D is not a dominating set of G. Then d(x,D) = min{d(x,w) : w ∈ D} ≥ 2 for some x ∈ V \ D,

which implies (without loss of generality) that there exists a path (x, y, . . . , ui), where ui ∈ D with

d(x, ui) = min{d(x,w) : w ∈ D}. Then M ∪ {xy} is a matching of G, which is a contradiction to the

maximality of M . Also, M maximal implies that the set V \D is independent. It follows that D is

an SSSDS of G, and hence γsss(G) ≤ 2β1(G).

Therefore γsss(G) ≤ min{n− β0(G), α0(G), 2β1(G)}. �

Corollary 2.18. For any tree T , γsss(T ) ≤ β0(T ).

Corollary 2.19. Let G be any connected non-trivial graph. Then γsss(G) + i(G) ≤ n.

Proof. Since i(G) ≤ β0(G) and γsss(G) ≤ n− β0(G), it follows that γsss(G) + i(G) ≤ n. �

3. Graph operations

This section is mostly focused on determining the semi-strong split domination number of a graph

obtained by applying graph operations on two graphs.

Theorem 3.1. Let G1 and G2 be any two graphs of order n1 and n2 respectively, with min{n1, n2} ≥ 1,

and such that V (G1)∩V (G2) = ∅. Then γsss(G1+G2) = min{n1+k2, n2+k1}, where ki is the minimum

cardinality of a set Di ⊂ V (Gi) such that 〈V (Gi) \Di〉 is isomorphic to sK1 ∪ tK2 for some integers

s, t ≥ 0.

Proof. Let D be any SSSDS of G1 + G2, and let V ′ = V (G1 + G2) \ D. If |V ′ ∩ V (Gi)| ≥ 1 and

|V ′ ∩ V (Gj)| ≥ 2, where {i, j} = {1, 2}, then deg〈V ′〉(x) ≥ 2 for every x ∈ V ′ ∩ V (Gi), which is a

contradiction. If |V ′ ∩ V (G1)| = |V ′ ∩ V (G2)| = 1, then D is an SSSDS of cardinality n1 + n2 − 2 ≥
min{n1 +k2, n2 +k1}. We now assume that V ′∩V (Gi) = ∅, for i = 1 or i = 2. Then |D∩V (Gj)| ≥ kj ,

according to the definition of kj , which implies that γsss(G1 +G2) ≥ min{n1 + k2, n2 + k1}.
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Let Di be a minimum subset of V (Gi) such that the graph 〈V (Gi) \ Di〉 contains no vertex of

degree 2 or more, for i = 1, 2. Then D1 ∪ V (G2) and D2 ∪ V (G1) are SSSDSs of G1 + G2. Hence

γsss(G1 +G2) ≤ min{n1 + k2, n2 + k1}. Therefore, γsss(G1 +G2) = min{n1 + k2, n2 + k1}. �

Theorem 3.2. Let G1 and G2 be any two graphs of order n1 and n2 respectively, such that V (G1) ∩
V (G2) = ∅. Then γsss(G1 ◦G2) = n1(k + 1), where k is the minimum cardinality of a set S ⊂ V (G2)

such that 〈V (G2) \ S〉 is isomorphic to sK1 ∪ tK2 for some integers s, t ≥ 0.

Proof. Let V = V (G1 ◦ G2) =
(

n1⋃
i=1

Vi

)
∪ V (G1), where Vi = {ui1 , . . . , uin2

} and 〈Vi〉 ∼= G2 for

i = 1, . . . , n1, and V (G1) = {v1, . . . , vn1}. Let D = V (G1) ∪
(

n1⋃
i=1

Si

)
, where Si ⊂ Vi is a set of

minimum cardinality such that the induced subgraph 〈Vi \ Si〉 is isomorphic to sK1 ∪ tK2 for some

integers s, t ≥ 0, for each i = 1, . . . , n1. Then clearly D dominates the set V (G1 ◦G2), and the induced

subgraph 〈V (G1 ◦G2) \D〉 ∼= n1sK1 ∪n1tK2. This implies that D is an SSSDS of G1 ◦G2, and hence

γsss(G1 ◦G2) ≤ n1k + n1.

Conversely, let D′ be any SSSDS of G1 ◦ G2. If G2 has no components of order 3 or greater, then

k = 0 and V (G1) is a γsss(G1 ◦G2)-set, since for every vertex vi ∈ V (G1) \D′ there must be at least

one vertex of D′ in the ith copy of G2.

Assume G2 has a component of order 3 or greater, then Theorem 2.3 implies that k ≤ n2 − 2.

If vi /∈ D′ for some i, 1 ≤ i ≤ n1, then |D′ ∩ Vi| ≥ n2 − 1, else d〈V−D′〉(vi) ≥ 2. If vi ∈ D′

for some i, 1 ≤ i ≤ n1, then |D′ ∩ Vi| ≥ k, according to the definition of k. Therefore, |D′| ≥
a(n2 − 1) + (n1 − a)k + (n1 − a) = n1k + n1 + at, where a = |V (G1) \ D′| and t = (n2 − k − 2).

Since k ≤ n2 − 2, we have t ≥ 0; also clearly a ≥ 0, so |D′| ≥ n1k + n1. Therefore, in any case

γsss(G1 ◦G2) = n1(k + 1). �

Theorem 3.3. Let G be any graph of order n which is not totally disconnected. Then γsss(Tk(G)) = n

for every k ≥ 2.

Proof. Take V = V (Tk(G)) and D = V (G) = {v1, v2, . . . , vn}. Let e1
i , e

2
i , . . . , e

k
i be the new edges of

Tk(G) corresponding to the edge ei ∈ E(G), for i = 1, 2, . . . ,m. Then the induced subgraph 〈V \D〉
is isomorphic to (mk)K2. Since D is a dominating set of V (Tk(G)), then D is an SSSDS of Tk(G), so

γsss(Tk(G)) ≤ n.

Now let D′ be a minimum SSSDS of (Tk(G)). It is clear that every isolated vertex belongs to

D′. If vi /∈ D′ for some i, 1 ≤ i ≤ n, where vivj = et ∈ E(G), then to dominate the ends of

e1
t , e

2
t , . . . , e

k
t which are adjacent to vi we need at least k vertices which are incident to e1

t , e
2
t , . . . , e

k
t .

Hence |D′| ≥ a + (n − a)k, where a = |V (G) ∩D′|. Since k ≥ 2 and a ≤ n, then |D′| ≥ 2n − a ≥ n,

which implies that γsss(G) ≥ n. Therefore, γsss(G) = n. �

Lemma 3.4. Let G be a graph, and let Kn1 ,Kn2 , . . . ,Knt be (not necessarily maximal) disjoint cliques

of G, where min{n1, n2, . . . , nt} ≥ 2. Then γsss(G) ≥
t∑

i=1
(ni − 2).
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Proof. Let D be any SSSDS of G. If |V (Kni) ∩D| ≤ ni − 3 for some i, 1 ≤ i ≤ t, then the induced

subgraph 〈V (Kni) \D〉 is a clique of 〈V \D〉 of order at least 3, which is a contradiction. Therefore

|V (Kni) ∩D| ≥ ni − 2 for every i = 1, 2, . . . , t, so γsss(G) ≥
t∑

i=1
(ni − 2). �

Theorem 3.5. Let G be a connected split graph with split partition S ∪ I, where 〈S〉 is a clique and

I is an independent set of G. Then |S| − 2 ≤ γsss(G) ≤ |S|. Furthermore,

(1) γsss(G) = |S| if, and only if, for every x ∈ S it holds that either x has a private neighbor or

|N(x) ∩ I| ≥ 2.

(2) γsss(G) = |S| − 1 if, and only if, there is at least one vertex x having no private neighbors and

such that |N(x) ∩ I| ≤ 1, and every y ∈ S, y 6= x has at least one neighbor in I.

(3) γsss(G) = |S| − 2 if, and only if, there are at least two vertices in S having no neighbors in I.

Proof. The inequality γsss(G) ≥ |S| − 2 follows from Lemma 3.4, since it holds trivially if |S| = 1. On

the other hand, since G is connected then S is a dominating set, and V \S = I is an independent set.

Therefore, S is always an SSSDS of G, hence γsss(G) ≤ |S|.

(i) Assume that γsss(G) = |S|. If there exists x ∈ S such that x has no private neighbor and

|N(x) ∩ I| ≤ 1, then there exists y ∈ S, y 6= x, such that N(x) ∩ I ⊆ N(y). This implies that S \ {x}
is an SSSDS of G, which is a contradiction. Conversely, assume that each x ∈ S has either a private

neighbor or |N(x) ∩ I| ≥ 2. Suppose there exists x ∈ S such that D = S \ {x} is an SSSDS of G.

Then clearly x has no private neighbors, because D is a dominating set of G. Since |N(x) ∩ I| ≥ 2,

we have deg〈V \D〉(x) ≥ 2, and so D is not an SSSDS of G. Therefore, γsss(G) = |S|.

(ii) Assume that γsss(G) = |S| − 1. Then there must be at least one vertex x having no pri-

vate neighbors and such that |N(x) ∩ I| ≤ 1. Suppose there are two vertices x, y in S such that

|N(x)∩ I| = |N(y)∩ I| = 0. Then S \{x, y} is an SSSDS of G, which is a contradiction. Conversely, if

there is one vertex x having no private neighbors and such that |N(x)∩I| ≤ 1, and every y ∈ S, y 6= x

has at least one neighbor in I, then S \ {x} is an SSSDS of G, but S \ {u, v} is not an SSSDS of G for

any {u, v} ⊂ S.

(iii) Assume that γsss(G) = |S| − 2, and let D = S \ {x, y} be a minimum SSSDS of G. Suppose

|N(x) ∩ I| ≥ 1. Then deg〈V \D〉(x) ≥ 2, which is a contradiction. Conversely, if there are two vertices

x, y in S having no neighbors in I, then S \ {x, y} is an SSSDS of G. �

4. Conclusions and scope

In this paper we introduced the concept of semi-strong split domination and began the study of

γsss. Of course, these are only introductory steps, and there is still much to be discovered in this topic.

Among the questions raised by this research, the following are of particular interest to the authors:
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(1) Characterize graphs G for which γ(G) = γsss(G).

(2) Characterize graphs G for which γs(G) = γsss(G).

Corollary 2.9 implies that if γ(G) = γsss(G), then γs(G) = γsss(G). The converse is not true.

(3) Characterize graphs G for which γsss(G) = γss.

(4) Characterize graphs G without isolated vertices such that γsss(G) + γ(G) = n.

As noticed earlier, it is enough to solve the problem for connected graphs.

(5) Given positive integers a, b, c, and d with a ≤ b ≤ c ≤ d, under which conditions there exists

a graph G such that γ(G) = a, γs(G) = b, γsss(G) = c and γss(G) = d ?

It is also interesting to consider the problem in general: Given a graph G = (V,E) and a positive

integer k, a set S ⊆ V is k-split dominating if it is dominating and 〈V \ S〉 has no vertices of degree

greater than k. Then a strong split dominating set is a 0-split dominating set, a semi-strong split

dominating set is a 1-split dominating set, and so on. The k-split dominating number γk
s is defined

accordingly. Following the idea of Proposition 2.7, it is easily shown that for every positive integer t,

there is a connected graph such that γk
s −γk−1

s ≥ t: The graph consisting on t cliques of order p sharing

a common vertex, where p ≥ k + 2. This suggests several questions, as well as useful applications,

regarding this generalized concept.

Another possible variant is the following: Given a graph G = (V,E) and a positive integer k, a set

S ⊆ V is k-clique dominating if it is dominating and 〈V \ S〉 has no cliques of order greater than k.

Then a strong split dominating set is a 1-clique dominating set, a semi-strong split dominating set is

a 2-clique dominating set, etc. Again, we define the k-clique dominating number γk
c , and for every

positive integer t there is a connected graph such that γk
c −γk−1

c ≥ t (same example as in the previous

paragraph, but asking only p ≥ k + 1, because of the ”shift” in notation). It is straightforward that

for every positive integer k ≥ 2, γk+1
c ≤ γk

s (as mentioned earlier, equality holds in every graph for

k = 1, 2).
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