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Communicated by Alireza Abdollahi

Abstract. We define minimal CN-dominating graph MCN(G), commonality minimal CN-dominating

graph CMCN(G) and vertex minimal CN-dominating graph MvCN(G), characterizations are given

for graph G for which the newly defined graphs are connected. Further serval new results are developed

relating to these graphs.

1. Introduction

All the graphs considered here are finite and undirected with no loops and multiple edges. As usual

p = |V | and q = |E| denote the number of vertices and edges of a graph G, respectively. In general,

we use 〈X〉 to denote the subgraph induced by the set of vertices X and N(v) and N [v] denote the

open and closed neighbourhoods of a vertex v, respectively. A set D of vertices in a graph G is a

dominating set if every vertex in V − D is adjacent to some vertex in D. The domination number

γ(G) is the minimum cardinality of a dominating set of G. A set S ⊆ V is a neighbourhood set of

G, if G =
⋃

v∈S〈N [v]〉, where 〈N [v]〉 is the subgraph of G induced by v and all vertices adjacent to

v. The neighbourhood number η(G) of G is the minimum cardinality of a neighbourhood set of a

graph G. A neighbourhood set S ⊆ V is a minimal neighbourhood set, if S − v for all v ∈ S, is not a

neighbourhood set of G.

For terminology and notations not specifically defined here we refer reader to [2]. For more details

about domination number and neighbourhood number and their related parameters, we refer to [3],
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[4], and [9].

Let G be simple graph G = (V,E) with vertex set

V (G) = {v1, v2, . . . , vn}.

For i 6= j, the common neighborhood of the the vertices vi and vj , denoted by Γ(vi, vj), is the set of

vertices, different from vi and vj , which are adjacent to both vi and vj . A subset D of V is called

common neighbourhood dominating set (CN-dominating set) if for every v ∈ V − D there exist a

vertex u ∈ D such that uv ∈ E(G) and |Γ(u, v)| ≥ 1, where |Γ(u, v)| is the number of common

neighbourhood between the vertices u and v. The minimum cardinality of such CN-dominating set

denoted by γcn(G) and is called common neighbourhood domination number (CN-domination num-

ber) of G. It is clear that CN-domination number is defined for any graph. A common neighbourhood

dominating set D is said to be minimal common neighbourhood dominating set if no proper subset

of D is common neighbourhood dominating set. A minimal common neighbourhood dominating set

D of maximum cardinality is called Γcn-set and its cardinality is denoted by Γcn. Let u ∈ V . The

CN-neighbourhood of u denoted by Ncn(u) is defined as Ncn(u) = {v ∈ N(u) : |Γ(u, v)| ≥ 1}. The

cardinality of Ncn(u)is denoted by dcn(u) in G, and Ncn[u] = Ncn(u) ∪ {u}. The maximum and

minimum common neighbourhood degree of a vertex in G are denoted respectively by ∆cn(G) and

δcn(G). That is ∆cn(G) = maxu∈V |Ncn(u)|, δcn(G) = minu∈V |Ncn(u)|. A subset S of V is called a

common neighbourhood independent set (CN-independent set), if for every u ∈ S, v /∈ Ncn(u) for all

v ∈ S − {u}. It is clear that every independent set is CN-independent set. An CN-independent set S

is called maximal if any vertex set properly containing S is not CN-independent set. The maximum

cardinality of CN-independent set is denoted by βcn, and the lower CN-independence number icn is

the minimum cardinality of the CN-maximal independent set. An edge e = uv ∈ E(G) is said to be

common neighbourhood edge(CN-edge) if |Γ(u, v)| ≥ 1. A subset S of V is called common neighbour-

hood vertex covering (CN-vertex covering) of G if for CN-edge e = uv either u ∈ S or v ∈ S. The

minimum cordiality of CN-vertex covering of G is called the CN-covering number of G and denoted

by αcn(G). For more details about CN-dominating set see [1].

A graph G is strongly regular with parameters (n, k, λ, µ) whenever G is regular of degree k, every

pair of adjacent vertices has λ common neighbors, and every pair of distinct nonadjacent vertices has

µ common neighbors.

Let S be a finite set and F = {S1, S2, . . . , Sn} be a partition of S. Then the intersection graphs

Ω(F ) of F is the graph whose vertices are the subsets in F and in which two vertices Si and Sj are

adjacent if and only if Si∩Sj 6= φ. Kulli and Janakiram introduced many classes of intersection graphs

in the field of domination theory see [5-8].

In this paper, we define CN-minimal dominating graph, vertex CN-minimal dominating graph and
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commonality minimal CN-dominating graph, some fundamental and interesting results results of these

graphs are established.

2. Minimal CN-Dominating Graphs

Definition 2.1. Let G = (V,E) be graph. The minimal CN-dominating graph of G is denoted by

MCN(G) is defined on the family of all minimal CN-dominating set of G, the vertex set is the CN-

minimal dominating sets and any two vertices are adjacent if their intersection is not empty.

Theorem 2.2. Let G be a graph. The MCN(G) is complete graph if and only if G contains at least

one CN-isolated vertex.

Proof. Let u be CN-isolated vertex in G. Then u is in every minimal CN-dominating set of G. Hence

every two vertices in MCN(G) are adjacent, thus MCN(G) is complete.

Conversely, suppose MCN(G) is complete graph and G has no CN-isolated vertex. Assume D be a

minimal CN-dominating of G. Then V −D contains a minimal CN-dominating set D
′
. Then D and

D
′

are two nonadjacent vertices in MCN(G), a contradiction. Hence G has CN-isolated vertex. �

A line graph L(G) (also called an interchange graph or edge graph) of a simple graph G is obtained

by associating a vertex with each edge of the graph and connecting two vertices with an edge if and

only if the corresponding edges of G have a vertex in common. And the lattice graph Lm,n is the line

graph of the complete bipartite graph Km,n, and any lattice graph is strongly regular graph. From

the next theorem we can get infinite family of lattice graphs.

Theorem 2.3. Let G1 and G2 be any two complete graphs with same number of vertices p. Let G be the

graph which obtained from the two complete graph by joining each vertex in G1 by at most one vertex

in G2 and vice versa. Then MCN(G) is strongly regular graph of parameters (p2, 2(p− 1), p− 2, 2).

Proof. Let the vertices of G1 and G2 be

v1, v2, . . . , vp and vp+1, vp+2, . . . , v2p

respectively. Then the minimal CN-dominating sets of G are of the form {vi, vj} where i = 1, 2, . . . , p

and j = p + 1, p + 2, . . . , 2p. Hence there are p2 vertices in MCN(G). It is clear for any vertex

u = {vi, vj} in MCN(G) there exist 2(p− 1) minimal CN-dominating has one common elements with

u. Therefore MCN(G) is (2(p−1))-regular graph. Now suppose u and v be any two adjacent vertices

in MCN(G) (two minimal CN-dominating set of G which has common element). Then it is clear there

is p− 2 minimal CN-dominating set of G have common elements with both minimal CN-dominating

sets which They are corresponding to u and v,and similarly if u and v be any two nonadjacent vertices

in MCN(G) (two minimal CN-dominating set of G which has no common element) then there are

only two minimal CN-dominating set of G have common elements with both minimal CN-dominating

sets which they are corresponding to u and v. Hence MCN(G) is strongly regular graph with the

parameters (p2, 2(p− 1), p− 2, 2). �
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Corollary 2.4. If G is the two copy of the complete graph Km, then MCN(G) is isomorphic to the

line graph of Km.

Example. Let G be the two copy of the complete graph K3. Then MCN(G) is shown in Figure 1.
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w

Figure 1

Theorem 2.A [1]

Let S be a maximal CN-independent set. Then S is minimal CN-dominating set.

Theorem 2.5. For any graph G with p vertices (p ≥ 2), MCN(G) is connected if and only if

∆cn(G) < p− 1.

Proof. Let ∆cn(G) < p − 1 and D1, D2 be any two minimal CN-dominating sets of G. We have two

cases:

Case 1: Every vertex in D1 is adjacent and has common neighbourhood to every vertex in D2 and

according to that we have two cases:

(1) Suppose for any two vertices u ∈ D1 and v ∈ D2 there exist a vertex w /∈ (D1 ∪ D2) such that

u not adjacent to both u and v, then we have two maximal CN-independent D3 and D4 containing

u,w and v, w respectively, and since by Theorem 2.A every maximal CN-independent set is minimal

CN-dominating set, D3 and D4 are minimal CN-dominating sets. Then D1 and D2 are connected in

MCN(G) through D3 and D4.

(2) There exist two vertices u ∈ D1 and v ∈ D2 such that every vertex not in D1 ∪D2 is adjacent and

has common neighbourhood to either u or v that is {u, v} is minimal CN-dominating set of G. Then

D1 and D2 are connected through{u, v}.
Case 2: Suppose there exist two vertices u ∈ D1 and v ∈ D2 such that u and v are not adjacent.

Then there exist maximal cn-independent D3 containing u and v then D3 is minimal CN-dominating

set of G. Hence D1 and D2 are connected through D3.

Conversely, Suppose that MCN(G) is connected and ∆cn(G) = p − 1. Then {u} is minimal CN-

dominating set of G and V − {u} contains a minimal CN-minimal dominating set, that is MCN(G)

is not connected, a contradiction. Hence MCN(G) is connected. �

Theorem 2.6. MCN(G) either connected or it has at least one component which is K1.

Proof. If ∆cn < p− 1 then from Theorem 2.5, MCN(G) is connected, then we have only two cases:

Case 1: δcn = ∆cn = p−1. Then MCN(G) is complete graph and all the singleton {u}, where u ∈ G



CN-DOMINATING GRAPHS 25

are minimal CN-dominating sets. then all the components of MCN(G) are K1.

Case 2: Let δcn(G) < ∆cn(G) = p − 1. Let {u1, . . . , us} be the set of vertices in G such that

dcn(ui) = p − 1, where i = 1, . . . , t, then it is clear ui is minimal CN-dominating set. Then the

minimal CN-dominating sets {ui}, where i = 1, . . . , s form component isomorphic to K1. Hence has

at least one component which is K1. �

Theorem 2.7. For any graph G, β(MCN(G)) = dcn(G), where dcn(G) is the CN-domatic number

of G.

Proof. let F be the maximum order CN-domatic partition of V (G). If each dominating set in F

is minimal. Then F is maximum independent set in MCN(G) and hence β(MCN(G)) = dcn(G).

Otherwise, let D ⊆ F be CN-dominating set in F which is not minimal. Then there is minimal

CN-dominating set D
′ ⊂ D by replacing each D in F by its subset D

′
we see that F is maximum

independent set in MCN(G). Hence β(MCN(G)) = dcn(G). �

3. Commonality minimal CN-Dominating Graphs

Definition 3.1. The commonality minimal CN-dominating graph is denoted by CMCN(G) is the

graph which has the same vertex set as G with two vertices adjacent if and only if there exist minimal

CN-dominating in G containing them.

Example Let G be a graph as in Figure 2a. Then the minimal CN-dominating sets are {1, 2}, {1, 3}
and {1, 4}.The CMCN(G) is shown in Figure 2b.
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Figure 2a Figure 2b

Proposition 3.2. For any graph G,

(i) If G is complete graph, then CMCN(G) is totally disconnected.

(ii) If G is totally disconnected, then CMCN(G) is complete graph.

Theorem 3.3. For any graph G

(i) G ⊆ CMCN(G).

(ii) G ∼= CMCN(G) if and only if every minimal CN-dominating set of G is independent.

Proof. (i) let u and v be any two adjacent vertices in G, then we can extend the set {u, v} into

maximal CN-independent set S in G which is also minimal CN-dominating set that is u and v also
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adjacent vertices in CMCN(G). Hence G ⊆ CMCN(G).

(ii) Let every minimal CN-dominating of G is CN-independent. Then any two adjacent vertices in G

can not adjacent in CMCN(G), that is CMCN(G) ⊆ G and by (i), we get G ∼= CMCN(G).

Conversely, if CMCN(G) ⊆ G, then any two vertices in the same minimal CN-dominating set S of

G are not adjacent in G. Hence S is independent set. �

Let u ∈ V (G), the CN-neighbourhood of u denoted by Ncn(u) = {v ∈ N(u : |Γ(u, v)| ≥ 1}, where

|Γ(u, v)| is the number of common neighbours between u and v, the cardinality of Ncn(u) is denoted

by dcn(u), the CN-maximum degree ∆cn(G) and the CN-minimum degree are defined respectively

∆cn(G) = maxu∈V (G)|dcn(u)|, δcn(G) = minu∈V (G)|dcn(u)|.

Theorem 3.4. For any graph G with p vertices, where p ≥ 2, CMCN(G) is connected graph if and

only if ∆cn < p− 1.

Proof. Let ∆cn < p− 1 and u, v be any two vertices of G. Then we have four cases:

Case 1: If u and v are not adjacent in G then by Theorem 3.3, u is adjacent to v in CMCN(G).

Case 2: If u and v are adjacent in G and there is a vertex w not adjacent to both u and v, then in

CMCN(G), u and v are joining by the path uwv.

Case 3: If u and v are adjacent in G and every other vertex w is adjacent and has common neighbours

to at least one of u and v. Then {u, v} is minimal CN-dominating set of G. Hence u is adjacent to v

in CMCN(G).

Case 4: If u and v are adjacent in G and there exist a vertex w adjacent to u or v but has not

common neighbours, then there exist two maximum Cn-independent sets D1 and D2 contains u,w

and v, w respectively and by Theorem 2.A, D1 and D2 are minimal CN-dominating set in G. Hence

u and v are connected in CMCN(G) through w.

From the four cases we get that CMCN(G) is connected graph.

Conversely, suppose that CMCN(G) is connected graph. If possible suppose ∆cn = p− 1, then there

exist at least one vertex u in G such that dcn(u) = p− 1, then u is isolated vertex in CMCN(G), and

since G has at least two vertices implies that CMCN(G) has at least two component, a contradiction.

Hence ∆cn < p− 1. �

Definition A triangle-free graph is a graph containing no graph cycles of length three.

Theorem 3.A.[1] Let G be a graph, γcn(G) = p if and only if G is a triangle free.

Proposition 3.5. If G is triangle-free graph, then CMCN(G) is complete graph.

Proof. We know by Theorem 3.A, for any graph G, γcn(G) = p if and only if G is triangle-free, that

means there is only one minimal CN-dominating set which contains all the vertices and by using the

definition of CMCN(G) it is clear any two vertices are adjacent that means CMCN(G) is complete

graph.

Lemma 3.6. If G be a triangle-free graph, then G is totally disconnected if and only if every CN-

independent set in G is independent set.
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Proof. Let G be a triangle-free graph, and every CN-independent set in G is independent set, that

means the set V (G) is CN-independent set since G is triangle-free graph, and since every CN-

independent set in G is independent set, then V (G) is also independent set that is G is totally

disconnected.

Conversely, clearly if G is totally disconnected then every CN-independent set in G is also independent

set. �

Theorem 3.7. For any graph G with the property every CN-independent set in G is independent set,

γcn(CMCN(G)) = p if and only if G is Kp.

Proof. If G is Kp, then it is clear that the CMCN(G) is totally disconnected graph. Then

γcn(CMCN(G)) = γ(CMCN(G)) = p.

Conversely, suppose γcn(CMCN(G)) = p, then CMCN(G) is triangle-free graph by Theorem 3.A,

and by Lemma 3.6, CMCN(G) = Kp, since all the minimal CN-dominating sets in G are CN-

independent and by Theorem 3.3, G = Kp. Hence G is Kp.

Conversely, if G is Kp, then every minimal CN-dominating set of G is independent, and by Theorem

3.3 CMCN(G) = G = Kp. Hence γcn(CMCN(G)) = p. �

It is not true in general that if γcn(CMCN(G)) = p, then CMCN(G) is totally disconnected graph

we show that by the following example

Example. LetG be a graph as in Figure 3a, then the CN-minimal independent sets are {2}, {4}and {1, 3}
and it is clear from Figure 3b that γcn(CMCN(G)) = p but CMCN(G) is not totally disconnected.

zz
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Figure 3a Figure 3b

Proposition 3.8. The graph CMCN(G) is complete bipartite graph Kr,m, if and only if G is the

disjoint union of Kr and Km.

4. Vertex Minimal CN-Dominating Graphs

Definition 4.1. The vertex minimal CN-dominating graph MvCN(G) of a graph G is a graph with

V ∪S as vertex set, where S is the collection of all minimal CN-dominating set of G with two vertices
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u, v ∈ V ∪ S are adjacent if they are adjacent in G or v = D is a minimal CN-dominating set of G

containing u.

Example Let G be a graph as in Figure 2a, then the vertex minimal CN-dominating graph is shown

in Figure 4.
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Figure 4

Theorem 4.2. For any graph G, MvCN(G) is connected.

Proof. Since for each vertex v ∈ V (G) there exist a minimal CN-dominating set containing v, every

vertex in MvCN(G) is not isolated vertex.

Now suppose MvCN(G) is disconnected, then there exist at least two component say G1 and G2 and

there exist two nonadjacent vertices u, v such that u ∈ G1 and v ∈ G2 that means there is no minimal

CN-dominating set in G containing u and v, a contradiction. Hence MvCN(G) is connected. �

Theorem 4.3. For any graph G, diam(MvCN(G)) ≤ 3.

Proof. Suppose G has at least two vertices. Then MvCN(G) has at least three vertices , let u, v ∈
V (MvCN(G)), we consider the following cases:

Case 1: Suppose u, v ∈ V (G). Then in MvCN(G), d(u, v) ≤ 2.

Case 2: Suppose that u ∈ V (G) and v /∈ V (G). Then v = D is minimal CN-dominating set of G, if

u ∈ D, then in MvCN(G), d(u, v) = 1, if u /∈ D, then there exist vertex w ∈ D adjacent to u and has

common neighbours with u. Hence in MvCN(G) d(u, v) = d(u,w) + d(w, v) = 2.

Case 3: Suppose u, v /∈ V (G). Then u = D and v = D′ are two minimal CN-dominating set in G, if

D and D′ are disjoint, then every vertex in D is adjacent to some vertex x ∈ D′ and vice versa this

implies that in MvCN(G) d(u, v) = d(u,w) + d(w, x) + d(x, v) = 3, and if D and D′ are not disjoint

then in MvCN(G), d(u, v) = d(u,w) + d(w, v) = 2, where w is common vertex between D and D′.

Hence diam(MvCN(G)) ≤ 3. �
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