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ON THE EIGENVALUES OF FIREFLY GRAPHS
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Communicated by Dianhua Wu

ABSTRACT. The sharp upper bounds and the sharp lower bounds of the largest eigenvalues A, the
least eigenvalue \,, the second largest eigenvalue A2, the spread and the separator among all firefly

graphs on n vertices are determined.

1. Introduction

Let G = (V(G), E(G)) be a simple and connected graph with n vertices and A(G) be the (0,1)
adjacency matrix of G. The eigenvalues \; (1 < i < n) of A(G) satisfy A\ > Ay > -+ > \,.
The characteristic polynomial P(G, \) of G is defined as P(G,\) = det(A\ — A(G)). We call \;(G)
the i—th largest eigenvalue. The largest eigenvalue A\i(G) is called the index (or spectral radius) of
G. In particular, A(G) is irreducible if G is connected and it is well known that Ai(G) has the
multiplicity one and there exists a unique positive unit eigenvector corresponding to A;1(G) by the

Perron—Frobenius theory of nonnegative matrices. The spread and the separator of G are defined as
S(G) = M(G) — M(G), Sa(G) = M (G) — X2(G), respectively.

Definition 1.1. ([9]) A firefly graph Fsip—2s—2t—1 (s >0,t>0 andn —2s—2t—1>0) is a graph
of order n that consists of s triangles, t pendent paths of length 2 and n — 2s — 2t — 1 pendent edges,

sharing a common vertez.
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Fig.1. A firefly graph Fj;,—2s—21—1 Fig.2. A firefly graph F 34

The graph Fj 34 illustrated in Fig.2 is an example of a firefly graph. Let .%,, be the set of all firefly
graphs Fy; n—2s—2¢—1. Note that .%, contains the stars Sy, (= Fj o n—1), stretched stars (=2 Fotpn—2t—1),
friendship graphs (= Fanlp’O) and butterfly graphs (= Fy p—2s—1)-

Many extremal graphs belong to .%,. For trees, the stars S,, have the maximum spread. For
unicyclic graphs, Hong [8] determined the unique graph F} g,_3 with maximum largest eigenvalue.
Fan et al. [7] determined the unique graph Fj,_3 with minimum least eigenvalue and maximum
spread among all unicyclic graphs of order n when n > 12. In [12], Petrovi¢ et al. determined the
unique graph F g ,—3 with minimum least eigenvalue among the cacti with n vertices (n > 12) and k
cycles, where 0 < k < |251|. Moreover, Li et al. [10] characterized graphs FLanl Jom—2[m=1 |1 with
the largest signless Laplacian spectral radius among all the cacti with n vertices.

There are many results in the literatue about the largest eigenvalue of simple graphs [5, 11, [13]. The
study of the second largest eigenvalue of graphs also has gotten much attention [4, [14]. The interest
in studying the least eigenvalue of graphs has increased [2, [3| [7, 12] recently.

In this paper, we study the largest, the second largest and the least eigenvalue, A1, As, A,, of the
graphs in .%,,, obtain the sharp upper bounds and the sharp lower bounds of the largest eigenvalues A1,
the least eigenvalue \,, and the second largest eigenvalue A\g in Section 2, investigate the minimum
spread, and the maximum (minimum) separator among all firefly graphs on n vertices in Sections
3 and 4, respectively. We also propose a conjecture of the maximum spread of firefly graphs on n

vertices.

2. Eigenvalues among all firefly graphs

In Subsection 2.1, we determine the unique graph with the maximum largest or the minimum
largest eigenvalue. In Subsection 2.2, the unique graph with the maximum least or the minimum least
eigenvalue is characterized. The sharp upper and lower bounds of the second largest eigenvalue are

also determined in Subsection 2.3.

2.1. The largest eigenvalue \;. In this subsection, we determine the unique graph with the maxi-
mum largest or the minimum largest eigenvalue.

For an edge subset F' C E(G), G — F denotes the graph obtained from G by deleting the edges in
F. For an edge subset F' N E(G) =0, G+ F’ denotes the graph obtained from G by adding the edges
in F/

Lemma 2.1. ([6]) Let G be a connected graph with e ¢ E(G). Then \(G) < M (G + e).
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Lemma 2.2. ([I1]) Let G be a connected graph with u € V(G). Let G, s be the graph obtained from G
by attaching two vertex-disjoint paths, one of r vertices and the other of s vertices, at one end vertex
to u respectively, where r > s > 1. If s > 2, then M (Gr41,5-1) < A1(Grys).

For u € V(G), let G — u be the graph obtained from G by deleting the vertex u and its incident
edges. We denote the set of all neighbors of the vertex u by N(u).

Lemma 2.3. ([6]) Let u € V(G) and C(u) be the set of all cycles of G containing u. Then

PG =AP(G—-u N = Y PG-u-vN)=2 3 P(G=V(Z),\.
weFE(G) Z€eC(u)

By Lemma [2.3] we have the following lemma.
Lemma 2.4. Let G = Fypn—2s—21—1 € Fn. Then
P(G ) = An7 257222 ( 4 1)sH LN — 1) — (n — $)A2 — 2sA +n — 25 — 2t — 1].
Proof. By applying Lemma to the common vertex u € V(G), we obtained

P(GA) = AP(G—u N — 3 PG-u-vN)-2 3 PG=V(Z),)
weE(G) zeC(u)

= AP2S2(N2 1) (26 AP 2 2 (N2 1 )s ]
(=25 — 2t — DAV2TR2(\2 )5 9 an—2s-2-1(\2 _ q)s+i-]

= AT 4 )L = 1)L A — (0 — 1)A? = 2sA + 1 — 25 — 26 — 1]. O
Lemma 2.5. Let 0 < s,t < |%51] and f(z) = 2* — (n —t)2® — 2sx + n—2s — 2t — 1. Then f(z) has
four roots x1,xa, T3, 24 Satisfying

21 >1>29>0>23> —1>24>—/n— 1.
Proof. f(0)=n—2s—2t—12>0, f(1)=—-4s—t <0, f(—1) = —t <0 and
fevn—T)=m-1)t—-1)+2sv/n—T+n—2s—2—1>0.

Since liril f(z) = +o0, then the function f(x) has exactly four roots:
T—T00

1 >1>29>0>23>—1>2x4 >—+/n—1. O
Theorem 2.6. Let G = Fsyp—2s—2t1—1 € Fpn. Then

Al(FO,L"T—lJ,n—ztnT—lJ—ﬂ < M(G) < Al(FL"T‘lj,O,n—ﬂ"T‘lJ—l);
and
Proof. First, we show that A\;(G) < Al(FLnT—lJ707n_2I.nT—1J_1).
Let u be the common vertex of G and {v,ve,...,v:} be the set of pendent vertices of the pendent
paths of length 2. Let G; = G + {uv; : 1 < i < t}. Then G; € %, and A\ (G) < A\1(G1) by Lemma
Let {21, 22,...,2n—2s—2t—1} be the set of pendent vertices which are the neighbors of w.
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Ifn=0 (mod 2), then let Gy = G + {212’2,232’4,... 7Zn72572t73zn72572t72}' Obviously, Gy =
Fnoo 01 € Z,, and )\1(G) < )\1(G1) < )\1(G2) by Lemma [2.1
2 bl
Ifn=1 (mod 2), then let G3 = G + {2122,2324,... ,Zn_gs_Qt_QZn_Qs_Qt_l}. Obviously, Gg =
T
F%70’0 € %, and /\1(G) < Al(Gl) <M\ (Gg) by Lemma
Then the result follows.

Second, we show that A\1(G) > Al(Foytanlj’niﬂanljil).
By Lemma 2.1} for any G € %,
M(G) = M(Fspn-2s-20-1) > M(Fs1tm-252041) > -+ > M (Fognat-1) for 0 <t <[ 251
By Lemma [2.2]
M(Fotn—2t—1) > M (Fotrin—2t—3) > -+ > Al(FO,L"T’lJ,anL”T’lJfl)'
Then the result follows. O

By Lemma [2.4 and Theorem we have the following corollary.

Corollary 2.7. Let G = Fsyp—2s—2t—1 € Fy. Then
nl < 0 (G) < Hin=s, ifn=1 (mod 2);
Ve .
n+2+\/§12+4ﬁ <\(G) < )q(Fanzﬁ’l), ifn =0 (mod 2).
HVIn=3 - jfn =1 (mod 2);

AM(G) = if and only if G = Fn-1 g, _o/n=1| 1,
Al(F"T*Q,o,l); if n =0 (mod 2) %5 1,.0n=2| 5= ] -1

M(G) w/"TH, ifn=1 (mod 2);
1 prm—
Vot 2t ‘;2+4n_12, if n=0 (mod 2)

if and only if G = Fo,LnT—1J7n_2LnT—1J_1.

2.2. The least eigenvalue ),,. In this subsection, we determine the unique graph with the maximum

least or the minimum least eigenvalue.

Theorem 2.8. Let G = Fy;p_2s—21—1 € ¥ (n>38). Then
)\n(Sn) < /\n<G) < )‘n(FO,L"T*anfQL"T*lJfl):

and
)\”(G) = )\H(Sn) Zf and only ZfG = FO,O,n—l o~ Sn
Mn(G) = )\n(FQl_”T_IJ,n_QLnT—IJ_l) if and only if G = FOanT_lJa"—QL"T_lJ—l'

Proof. First, we show that A\, (G) > A\, (S,) by the following two cases.
Case 1. s=0and t=0.

By Lemmal2.4, P(Fygn-1,)\) = P(Sp, A) = X" "2(A\2 —n+1). Then \i(S,) = v/n — L and A, (S,,) =
—v/n —1.

Case 2. s#0ort#0.
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By Lemma we have

P(Fstn—2s—2t—1,\) = AV72572=2(\ 4 1)sH=L(N — 1)sH1A — (n — 6)A2 — 25\ +n — 25 — 2t — 1].

Let f(s,t,x) = 2% — (n —t)2? — 280 +n —2s—2t — 1. By Lemma f(s,t,x) has the same least
root as P(Fsn—2s—2t—1,A). Therefore A, (Fstn—2s—2t—1) > An(Sn)-

Second, we show that A\, (G) < )\n(FO’I.nT—an_QI.nT—lJ_l). We only consider G' € #,\{Fo0n—1}-

The difference between polynomials f(s,t,x) and f(s + 1,¢,2) does not depend on the value of

parameter s:

f(s,t,z) — f(s+ 1,t,2) =22 + 2 = g(x).

The polynomial g(x) has exactly one root zop = —1. Noting that A\, (Fsn—2s—2t—1) < —1, then
f(s,t,x) < f(s+1,t,x) while x € (—o0, —1).

Since xgmoo f(s,t,z) = 400, by the graph of the polynomial function, we conclude that for 0 < ¢t <
|25 ], za(f(s,t,2)) < za(f(s+ 1,t,2)) while z4(f(s,t,2)) is the least root of f(s,t, ).

Thus, A (Fotn—2t—1) < Ap(Frn—2t—3) < -+ < )‘”(FL%J,t,anthL%Jfl)'

Let h(t,z) = 2* — (n—t)2? — 2| 2=2=L |p 4 n — 2[2=2=1 | — 2¢ — 1. By Lemmas h(t,z) has
the same least root as P(Fs¢,—2s—2t—1,A). The difference between polynomials h(¢, ) and h(t + 1, z)
does not depend on the value of parameter t:

h(t,z) —h(t+1,2) = —(z +1)% + 1.
14 —2n, ifn=1 (mod 2);
Since h(t,—2) = then h(t,—2) < 0 for n > 8. Thus h(t,z) <
13 —2n, ifn=0 (mod 2),
h(t + 1,z) while x € (—o0, —2).

Noting that lim h(t,z) = 400, by the graph of the polynomial function, we conclude that

r——00

za(h(t,x)) < x4(h(t + 1,2)) while z4(h(t,z)) is the least root of h(t,x).
Thus, )\n(FLanlJ,Oﬂl_QLanlJ_l) < )\n(FLnT%Ll,n_zl_nT%J_S) <0 < )\H(FO,L%J,W—ZL%J—J

Then the result follows. O

By Lemma [2.4] and Theorem we have the following corollary.

Corollary 2.9. Let G = Fs 25211 € F, (n>8). Then
—V/n =1 < A (G) < — /24, ifn=1 (mod 2);
—vVn—1< M\ (G) < — ”"+2+'2n2+4"712, if n =0 (mod 2).

Mn(G) = _\/@7 ifn=1 (mod 2);
—Wv if n=0 (mod 2)

if and only if G = FO,L%J,n—QL%J—l’

M(G) = —v/n —1if and only if G = Fyppn-1 = Sy.
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2.3. The second largest eigenvalue \y. In this subsection, we determine the sharp upper and lower

bounds of the second largest eigenvalue.
Theorem 2.10. Let G = Fyyp-2s—2t—1 € Fp (n>6). Then 0 < X2(G) < 1, and
X2(G) =0 if and only if G = Fyopn—1 = Sy,
A2(G) =1 if and only if G € F\ {Fo,0n-1, Fo,1,n-3, F1,0n-3}
Proof. We show that the result holds by the following three cases.
Case 1. s+t =0.
Then G = Fyon—1 and Xo(Fpon—1) = 0 by the proof Theorem

Case 2. s+t =1.
Note that

P(Fo1n-3,A) = A" 4\ — (n — 1)A2 +n - 3|,

and

P(F1707n_3, /\) = )\n—4()\ + 1)[)\3 — A2 = (TL — 1)/\ +n— 3]

Then )\2(F071’n73) = \/%2761%13 <land 0 < )\Q(Fl,[)’nfg) < 1.

Case 3. s+t > 2.
Let G € ﬁn\{FO,O,nflyFO,l,nf&Fl,[),nf?)}- Then we have

P(G,)\) = A 2572022 (N 4 1)sH=L N = 1)sH LN — (n —6)A2 +n — 25 — 2t — 1].
Clearly, 1 is a root of P(G,\). By Lemma Xo(Fstn—2s—2t—1) = 1. d

3. Spread among all firefly graphs

Recall that S(G) = A\ (G) — A\ (G). By Corollaries and we get the following theorem, and

later we propose a problem.

Theorem 3.1. Let G = Fy 452521 € F (0 >8). Then
\/2n+2§S(G)<1+7V§n_3+\/n—l, ifn=1 (mod 2);

Vn+2+Vn2+dn— 12 < 8(G) < M(Fazg )+ V=1, ifn=0 (mod 2).
The equality holds if and only if G = F07|_anan72|_anljil.

Lemma 3.2. ([7]) Let G be a connected graph with w € V(G). Let Gy (k> 1> 1) be a graph obtained
from G by attaching two hanging paths Py and P; at the vertex u (i.e. by identifying u first with one
pendent vertex of Py, and then with one pendent vertex of P,). Then forl > 2, A\y(Gri) < A(Grti-1,1)-
Theorem 3.3. Let G = Fytp-_25-2t—1 € F (n>8). Then

S(G) < maX{S(FS,07n,gs,1) 0<s< L"T_lj }
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Proof. By Lemmas for t > 1, we have

)\1( s,t,n—2s—2t— 1) <>\1( s,0,n—2s— 1) )\n(Fs,O,n—Qs—l) <A ( s,t,n—2s—2t— 1)

Then S(Fstn—2s—2t—1) < S(Fs0n—2s—1) for t > 1. O

With the help of MATLAB, by Theorem we get the graph Fy;,_9s—2—1 € %, with maximum
spread for 6 < n < 23 (see Table 1).

Table 1. The graph F§;,—2s—2t—1 € %, with maximum spread for 6 <n < 23.

n | max{S(Fstn-2s—2t—1)} | n | max{S(Fssn-2s—20—1)} | n | max{S(Fssn—2s—2¢—1)}
6 | S(Fooi)=46125 |12| S(Fios)=67321 | 18] S(Fsos) = 8.3264
7| S(Fapn)=5.0332 |13| S(Fiou) =7.0237 |19| S(Fsos) = 8.5635
8 | S(Fyos) =54142 |14 S(F470,5) — 73026 |20 S(Fsor)=8.7938
0 | S(Fyon)=57714 | 15| S(Fhou)=7.5714 | 21| S(Frog) = 9.0183
10| S(Fso3) =6.1100 | 16| S(Fses) =7.8315 | 22| S(Fror) = 9.2376
11| S(Fyou) = 64283 | 17| S(Fhoq) =8.0283 | 23| S(Fros) = 9.4515

Hence we have the following conjecture.
Conjecture 3.4. Let G be the graph with maximum spread among F, (n > 6). Then
Fg,o,"T*v if n =0 (mod 3);
G = F%%O,%, ifn=1 (mod 3);

FnT—270,nT+1, if n =2 (mod 3).
4. Separator among all firefly graphs
Recall that the separator S4(G) = A\1(G) — A\2(G). In this section, we characterize the graph with
maximum or minimum separator in .%,.
Theorem 4.1. Let G = Fy;y—2s—21—1 € Fn (0 >6). Then

\/@—1§SA(G)§ n—1, ifn=1 (mod 2);

and
SA(G) =+vn—1if and only if G = S,
ntl 1, ifn=1 (mod 2);

Sa(G) = if and only if G = F, 0 m5t 2| nst |1
X "+2+\/2”2+4W -1, ifn=0 (mod 2)

Proof. First, we show that S4(G) < v/n — 1.

Case 1. G € {Fo0n—1,Fo,1,n-3, F1,0n—3}
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Then SA(FO,O,nfl) = SA(Sn) =+vn—1 and
— 2_ N 2_
Sa(Fon_s) = \/n 1+\/n2 6nt13 \/n = TESE R

Recall that P(Fi0pn-3,\) = A" 4(A+1)[A3=A2—(n—1)A+n—3]. Let f(z) = 2> —2?—(n—1)z+n—3.
Then the function f(x) has exactly three roots: z3 < —1 <0 < x2 < 1 < 7.

Since f(3) = 2221 > 0 and f(Vn—1+ 1) = 787%25782”“1 > 0 for n > 6, then 1 < 2o < 1 and

1<z <+vn—1+3. Thus
Sa(Fromn-3) = M(Fromn-3) — Ae(Fron-3) <VvVn—1+3—1=yn—1.

Case 2. G € Z,\{Fo0,n—1, Fo,1,n-3, F1,0n—3}

Then A\y(G) = 1 by Theorem By Theorem Sa(GQ) < Al(FLanlJyo’n72Lanljil) - 1.
Subcase 2.1. n =1 (mod 2).

Then Al(FnT—lﬂp) = lhvin-3 V;”H)’ > 1 by Corollary Thus SA(Fan7070) = 1&V/idn=3 V;l"*:i —l<vn—-1=
Sa(Sp).
Subcase 2.2. n =0 (mod 2).

Then by Lemma [2.4]

P(Fazz 1, 0) = (X2 = 1)1 —nX2 = (n = 22+ 1],

Since P(Fu_z g1, Vn—1+1)=Mmn-14+2/n-1D"*(Vn—1+1)(n+2yn—-1)+1] > 0 and

lim P(Fn-2yq,A) = 400, A{(Fa2 ;) <vn—-1+1.
)\—>+OO 2 2 1

Then SA(F”T_l,O,l) = Al(F"T_Q,O,I) —1l<vn—-1= SA(Sn).

The result follows.

Second, we show that
‘/HTH_L ifn=1 (mod 2);
Sa(G) =
\/ N — . o
n2EVAHINTI2 1) ifn =0 (mod 2).
Case 1. G € {Foon—1,F0,1,n-3, F10n-3}

We only consider G e {FO,l,n—3a Fl’(]’n_g}. By Theorems and for G € {FO,l,n—3a Fl’(]’n_g},
)\1(G) > Al(FO,L"T*lJ,nfﬂnT’ljfl)? 0< )\Q(G) < 1 and A2<F0,L%J,n72L%Jfl) = 1. Thus

SA(G) = )\1(G) — )\Q(G) > Al(FO,L%Jﬂ-ﬂ%J-” —1.
Case 2. G € F#,\{Foon—1,Fo,1n-3, F1,0n—3}-

Then by Theorem A(G) > Al(FO’LnT—IJ’n_QLnT—IJ_l). By Theorem A2(G) =1 and S4(G) =
By Corollary the result follows. O
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