A $(p,q)$ graph $G$ is said to have a $k$-odd mean labeling $(k \ge 1)$ if there exists an injection $f : V \to \{0, 1, 2, \ldots, 2k + 2q - 3\}$ such that the induced map $f^*$ defined on $E$ by $f^*(uv) = \left\lceil \frac{f(u)+f(v)}{2}\right\rceil$ is a bijection from $E$ to $\{2k - 1, 2k + 1, 2k + 3, \ldots, 2 k + 2q - 3\}$. A graph that admits $k$-odd mean labeling is called $k$-odd mean graph. In this paper, we investigate $k$-odd mean labeling of prism $C_m \times P_n$.
[1] K. Amuthavalli, Graph labeling and its applications-Some generalization of odd mean labeling, Ph. D. Thesis, Mother Teresa Womens University, 2010.
[2] G. S. Bloom and S. W. Golomb, Numbered complete graphs, unusual rulers and assorted applications, Theory and Applications of Graphs, Lecture notes in Mathematics,642, Springer, Berlin, 1978 53–65.
[3] G. S. Bloom and S. W. Colomb, Applications of Numbered undirected graphs, Proceedings of IEEE, 65 (1977) 562–570.
[4] G. S. Bloom and D. F. Hsu, On graceful digraphs and a problem in network addressing, Congr. Numer., 35 (1982) 91–103.
[5] A. J. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., Dynamic Survey,5 (1998) pp. 43.
[6] B. Gayathri and K. Amuthavalli, $k$-odd mean labeling of graphs, Proceedings of the International Conference on Mathematics and Computer Science-2, Sitech Publications, 2007 112–115.
[7] B. Gayathri and K. Amuthavalli, $(k,d)$-odd mean labeling of graphs, National Symposium on Mathematical Methods and Applications, I.I.T., Chennai, 2006.
[8] B. Gayathri and K. Amuthavalli, $k$-odd mean labeling of Crown graphs, Int. J. Math. Comput. Sci., 2 no. 3 (2007) 253–259.
[9] B. Gayathri and K. Amuthavalli, $(k,d)$-odd mean labeling of some graphs, Bull. Pure Appl. Sci. Sect. E Math. Stat., 26 no. 2 (2007) 263–267.
[10] B. Gayathri and K. Amuthavalli, $k$-odd mean labeling of $⟨K_{1,n},K_{1,m}⟩$, Acta Cienc. Indica Math., 34 no. 2 (2008) 827–834.
[11] F. Harary, Graph Theory, Addison Wesley, Mass Reading, 1972.
[12] K. Manickam and M. Marudai, Odd mean labelings of graphs, Bull. Pure Appl. Sci. Sect. E Math. Stat., 25 no. 1 (2006) 149–153.
[13] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs Internat. Sympos., Rome, 1966), Gordon and Breach, New York; Dunod, Paris, 1967 349–355.
[14] S. Somasundaram and R. Ponraj, Mean Labeling of graphs, Nat. Acad. Sci. Lett., 26 no. 7-8 (2003) 210–213.