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Abstract. The main result of this paper gives a characterization of association schemes having com-

mutative thin thin residue. This gives a generalization of Ito’s Theorem on finite groups for association

schemes.

1. Introduction

The theory of association schemes is a generalization of the theory of finite groups. So, it is natural

to ask which group theoretic results can be generalized to association schemes. As an important results

in the character theory of finite groups is Ito’s Theorem. This theorem is as the following:

Theorem 1.1. (Ito) Let G be a finite group and A be an abelian normal subgroup of G. Then χ(1)

divides |G : A| for all χ ∈ Irr(G).

The above theorem gives a characterization of finite groups which contain an abelian normal sub-

group (See [7, Theorem 6.15]). It is known that every finite group G can be identify to the thin

association scheme (G, G̃) where G̃ = {g̃|g ∈ G} and g̃ = {(h, k) ∈ G × G|hg = k}. Moreover, for

every χ ∈ Irr(G), χ(1) = mχ, where mχ is the multiplicity of χ in the decomposition of standard char-

acter of association scheme (G, G̃). Since normal subgroups of G are strongly normal closed subsets

of association scheme (G, G̃), the following theorem generalize Ito’s Theorem in the theory of finite

groups (see Section 2 for definitions):

Theorem 1.2. Let (X,S) be an association scheme and T a strongly normal closed subset of S. If T

is an abelian group, then for every χ ∈ Irr(S), mχ divides |X|/|T |.
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In this paper as a main result we give a proof for Theorem 1.2 in Section 3.

2. Preliminaries

Let us first state some necessary definitions and notation. For details, we refer the reader to [8] for

the background of association schemes. Throughout this paper, C denotes the complex numbers.

Definition 2.1. Let X be a finite set and S be a partition of X × X. Then (X,S) is called an

association scheme (or shortly scheme) if the following properties hold:

(i) 1X ∈ S, where 1X := {(x, x)|x ∈ X}.
(ii) For every s ∈ S, s∗ is also in S, where s∗ := {(x, y)|(y, x) ∈ s}.

(iii) For every g, h, k ∈ S, there exists a nonnegative integer λghk such that for every (x, y) ∈ k,

there exist exactly λghk elements z ∈ X with (x, z) ∈ g and (z, y) ∈ h.

For each s ∈ S, we call ns = λss∗1X the valency of s. For any nonempty subset H of S, put

nH =
∑

h∈H nh. We call nS the order of (X,S). Clearly, nS = |X|.
Let H and K be nonempty subsets of S. We define HK to be the set of all elements t ∈ S such

that there exist element h ∈ H and k ∈ K with λhkt 6= 0. The set HK is called the complex product

of H and K. If one of factors in a complex product consists of a single element s, then one usually

writes s for {s}. A scheme (X,S) is called commutative if for all g, h, k ∈ S, λghk = λhgk.

A nonempty subset H of S is called a closed subset if HH ⊆ H. For a closed subset H of S

we define Oϑ(H) = {h ∈ H|nh = 1}, called the thin radical of H. Note that Oϑ(H) is a closed

subset of S. In fact Oϑ(H) is a group with respect to the relational product. The closed subset H is

called thin if Oϑ(H) = H. A closed subset H of S is called strongly normal, denoted by H C] S, if

sHs∗ = H for any s ∈ S. We put Oϑ(S) = ∩HC]SH and call it the thin residue of H. One can see

that Oϑ(S) = 〈∪s∈Sss∗〉.
Let H be a closed subset of S. For every h ∈ H we define xh = {y ∈ X|(x, y) ∈ h}. Put X//H =

{xH|x ∈ X} and S//H = {sH |s ∈ S}, where xH =
⋃
h∈H xh and sH = {(xH, yH)|y ∈ xHsH}. Then

(X//H, S//H) is a scheme, called the quotient scheme of (X,S) over H. Note that a closed subset H is

strongly normal iff the quotient scheme (X//H, S//H) is a group with respect to the relational product

iff ss∗ ⊆ H, for every s ∈ S.

Let (X,S) be a scheme. For every s ∈ S, let σs be the adjacency matrix of s. For any nonempty

subset H of S, we put σH := {σh|h ∈ H}. For convenience σ1X is denoted by 1. It is known that

CS =
⊕

s∈S Cσs, the adjacency algebra of (X,S), is a semisimple algebra. The set of irreducible

characters of S is denoted by Irr(S). We denote by eχ, the central primitive idempotent of CS
corresponding to χ. An irreducible character χ ∈ Irr(S) is called faithful if Ker(χ) = {1X}, where

Ker(χ) = {s ∈ S|χ(σs) = nsχ(1)}. One can see that 1S ∈ HomC(CS,C) such that 1S(σs) = ns is an

irreducible character of CS, which is called the principal character. In [4], Hanaki has shown that the

irreducible characters of S//Oϑ(S) can be consider as irreducible characters of S.
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Let ΓS be a representation of CS which sends σs to itself for every s ∈ S. Let γS be the character

afforded by ΓS . Then one can see that γS(1) = |X| and γS(σs) = 0 for every 1X 6= s ∈ S. Consider

the following irreducible decomposition of γS ,

γS =
∑

χ∈Irr(S)

mχχ.

Then we call mχ the multiplicity of χ and {mχ|χ ∈ Irr(S)}, the set of multiplicities of (X,S). One

can see that m1S = 1 and |X| =
∑

χ∈Irr(S)mχχ(1) (see [8, section 4]). Moreover, for every χ ∈ Irr(S),

χ ∈ Irr(S//Oϑ(S)) if and only if mχ = χ(1) (see [6]).

Let (X,S) be a scheme and T a closed subset of S. Suppose that L is a CT -module which affords

the character ϕ, and V is a CS-module which affords the character χ. Then V is a CT -module which

affords the restriction χT of χ to CT , and LS = L⊗CT CS is a CS-module which affords the induction

ϕS of ϕ. For all characters χ, ψ of CT we define

(χ, ψ)T =
∑

ϕ∈Irr(T )

aϕbϕ,

where χ =
∑

ϕ∈Irr(T ) aϕϕ and ψ =
∑

ϕ∈Irr(T ) bϕϕ.

Theorem 2.2 (See [2].). Let (X,S) be a scheme and T a closed subset of S. Suppose that ϕ ∈ Irr(T ).

Then
nS
nT

mϕ =
∑

χ∈Irr(S)

(ϕS , χ)Smχ.

Let (X,S) be a scheme and T be a strongly normal closed subset of S. Put G = S//T . Let ϕ be an

irreducible character of T and L be an irreducible CT module affording ϕ. Consider the induction of

L to S. Then one can see that

LS = L⊗CT CS =
⊕

sT∈S//T

L⊗ C(TsT ).

The stabilizer G{L} of L in G is defined by

G{L} = {sT ∈ S//T |L⊗ C(TsT ) ∼= L}.

One can see that G{L} is a subgroup of G.

Theorem 2.3. (See [2].) Let (X,S) be a scheme and T be a strongly normal closed subset of S. Fix

an irreducible character ϕ of CT . Suppose that U//T is the stabilizer of ϕ in S//T . Put

A = {ψ ∈ Irr(U)|(ψT , ϕ) 6= 0}, B = {χ ∈ Irr(S)|(χT , ϕ) 6= 0}.

Then there exists a bijection τ : A → B such that τ(ψ) = ψS. Moreover, ψ = τ−1(χ) is the unique

element of A where (χU , ψ) 6= 0.
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3. Proof of the main theorem

Let (X,S) be a scheme and T be a strongly normal closed subset of S such that T ⊆ Oϑ(S) and

commutative. Let χ ∈ Irr(S) and ϕ ∈ Irr(T ) such that (χT , ϕ) 6= 0. Consider the induction of Ceϕ to

S. Then we have

Ceϕ ⊗CT CS =
⊕

sT∈S//T

Ceϕ ⊗ C(TsT ).

Let H//T be the stabilizer of Ceϕ in S//T .

Lemma 3.1. Suppose that H//T = S//T . Then mχ divides nS/nT .

Proof. Since H//T = S//T it follows that for every s ∈ S, Ceϕ ⊗ C(TsT ) ∼= Ceϕ. Let s ∈ S − T . Put

Ts = {t ∈ T |st = s}. We show that Ts ≤ Ker(ϕ). To do so, let t ∈ Ts. Then for every t′ ∈ T we have

(st′)t = (st)t′ = st′. So < t > acts trivially on TsT = sT . This implies that t ∈ Ker(Ceϕ ⊗ C(TsT )).

Since Ceϕ ⊗ C(TsT ) ∼= Ceϕ it follows that t ∈ Ker(ϕ).

Now let s ∈ S−T . Since T is strongly normal we have s∗s ⊆ T . Let t ∈ s∗s. Since λs∗stnt = λst∗sns

we get st∗ = s and then s = st. So t ∈ Ts ≤ Ker(ϕ). This shows that s∗s ⊆ Ker(ϕ) and then

Oϑ(S) ⊆ Ker(ϕ). Since

S//Ker(ϕ) ' (S//Oϑ(S))//(Ker(ϕ)//Oϑ(S)),

it follows that S//Ker(ϕ) is a finite group and hence from [8, Theorem 2.2.3] we have Ker(ϕ) is a

strongly normal closed subset of S. Put K = Ker(ϕ). Since

(ϕS)T =
nS
nT

ϕ

and (ϕS , χ) 6= 0 we conclude that χT = eϕT , for some positive integer e. Thus χK = fϕK , for some

positive integer f . It follows that K < Ker(χ) and hence χ ∈ Irr(S//K). Since T//K is an abelian

normal closed subset of S//K, from Theorem1.1 we have

mχ = χ(1)|
nS
nK
nT
nK

=
nS
nT

.

This completes the proof. �

Lemma 3.2. If {T//T} ≤ H//T < S//T , then mχ divides nS/nT .

Proof. From Theorem 2.3 it follows that there exists ψ ∈ Irr(H) such that (ψH , ϕ) 6= 0 and χ = ψS .

Since the stabilizer of Ceϕ in H//T is H//T , from Lemma 3.1 we have

mψ|
nH
nT

and hence
nH
nT

= qmψ,(3.1)

for some positive integer q. On the other hand, since χ = ψS we have

mχ =
nS
nH

mψ
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and then from equality (3.1) we obtain

qmχ =
nS
nH

nH
nT

=
nS
nT

.

So mχ divides nS/nT . This completes the proof. �

Proof of Theorem 1.2. Let χ ∈ Irr(S) and ϕ ∈ Irr(T ) such that (χT , ϕ) 6= 0. Suppose that H//T

is the stabilizer of Ceϕ in S//T . Then either H//T = S//T or {T//T} ≤ H//T < S//T . So the result

follows from Lemmas 3.1 and 3.2, respectively. �

Corollary 3.3. Let (X,S) be a commutative scheme and T a thin strongly normal closed subset of

S. Then for every χ ∈ Irr(S), mχ divides nS/nT .

Remark 3.4. The abelian condition for T in Theorem 1.2 is a necessary condition. In the exam-

ple below we give a scheme with a nonabelian strongly normal closed subset which the conclusion of

Theorem 1.2 does not hold for (X,S).

Example 3.5. (This example is [5, as12, No. 42].)

Let (X,S) be a scheme of order 12 with the following basic matrix

7∑
i=0

iσgi =



0 1 2 3 4 5 6 6 6 7 7 7

1 0 4 5 2 3 7 7 7 6 6 6

2 5 0 4 3 1 7 7 7 6 6 6

3 4 5 0 1 2 7 7 7 6 6 6

5 2 3 1 0 4 6 6 6 7 7 7

4 3 1 2 5 0 6 6 6 7 7 7

6 7 7 7 6 6 0 4 5 1 2 3

6 7 7 7 6 6 5 0 4 2 3 1

6 7 7 7 6 6 4 5 0 3 1 2

7 6 6 6 7 7 1 2 3 0 4 5

7 6 6 6 7 7 2 3 1 5 0 4

7 6 6 6 7 7 3 1 2 4 5 0


where S = {s0, s1, . . . , s7}. Then from [5] the character table of the complex adjacency algebra of S

is as follows:

σs0 σs1 σs2 σs3 σs4 σs5 σs6 σs7 mχ

χ1 1 1 1 1 1 1 3 3 1

χ2 1 1 1 1 1 1 −3 −3 1

χ3 1 −1 −1 −1 1 1 3 −3 1

χ4 1 −1 −1 −1 1 1 −3 3 1

χ5 2 0 0 0 −1 −1 −0 0 4
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One can see that T = {s0, . . . , s5} is a strongly normal closed subset of S which is isomorphic to the

symmetric group S3. Consider irreducible character χ5 of S. Then mχ5 - nS/nT and so conclusion of

Theorem 1.2 does not hold for (X,S).

Let (X,S) be a scheme. Let χ be a character of S. Put Z(χ) = {s ∈ S||χ(σs)| = nsχ(1)}. Then

Z(χ) is a closed subset of S containing Ker(χ); see [3]

Corollary 3.6. Let (X,S) be a scheme and χ an irreducible character of S. If Z(χ) is a strongly

normal closed subset of S, then mχ divides nS/nZ(χ).

Proof. First we assume that χ is a faithful character. Then from [1, Theorem 3.1], Z(χ) is cyclic as a

finite group. So Z(χ) is an abelian strongly normal closed subset of S and Theorem 1.2 shows that

mχ divides nS/nZ(χ).

Now we assume that χ is not a faithful character of S. Put Z = Z(χ) and K = Ker(χ). Then from

[1, Theorem 2.1], χ can be considered as a faithful irreducible character of S//K. So there exists a

faithful irreducible character χ′ of S//K such that

χ′(σsK ) = (nsK/ns)χ(σs),

for every s ∈ S. Since

S//Z ∼= (S//K)//(Z//K)

it follows that Z//K is a strongly normal closed subset of S//K. Moreover, since

Z(χ′) = {sK ∈ S//K||χ′(σsK )| = nsKχ′(σ1K )}

= {sK ∈ S//K|(nsK/ns)|χ(σs)| = nsKχ′(σ1K )}

= {sK ∈ S//K||χ(σs)| = nsχ(1)}

= {sK ∈ S//K|s ∈ Z} = Z//K,

from above first case we conclude that mχ′ divides nS/nZ . But from [4, Thoerem 4.1], mχ = mχ′ and

so mχ divides nS/nZ , as desired. �
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