Tavakoli, M., Rahbarnia, F., Ashrafi, A. (2014). Studying the corona product of graphs under some graph invariants. Transactions on Combinatorics, 3(3), 43-49. doi: 10.22108/toc.2014.5542

M. Tavakoli; F. Rahbarnia; Ali Reza Ashrafi. "Studying the corona product of graphs under some graph invariants". Transactions on Combinatorics, 3, 3, 2014, 43-49. doi: 10.22108/toc.2014.5542

Tavakoli, M., Rahbarnia, F., Ashrafi, A. (2014). 'Studying the corona product of graphs under some graph invariants', Transactions on Combinatorics, 3(3), pp. 43-49. doi: 10.22108/toc.2014.5542

Tavakoli, M., Rahbarnia, F., Ashrafi, A. Studying the corona product of graphs under some graph invariants. Transactions on Combinatorics, 2014; 3(3): 43-49. doi: 10.22108/toc.2014.5542

Studying the corona product of graphs under some graph invariants

The corona product $G\circ H$ of two graphs $G$ and $H$ is obtained by taking one copy of $G$ and $|V(G)|$ copies of $H$; and by joining each vertex of the $i$-th copy of $H$ to the $i$-th vertex of $G$, where $1 \leq i \leq |V(G)|$. In this paper, exact formulas for the eccentric distance sum and the edge revised Szeged indices of the corona product of graphs are presented. We also study the conditions under which the corona product of graphs produces a median graph.

H. Wiener (1947). Structural determination of paran boiling points. J. Am. Chem. Soc.. 69, 17-20

Y. N. Yeh and I. Gutman (1994). On the sum of all distances in composite graphs. Discrete Math.,. 135, 359-365

V. Sharma, R. Goswami and A. K. Madan (1997). Eccentric connectivity index: a novel highly discriminating topological
descriptor for structure property and structure activity studies. J. Chem. Inf. Comput. Sci.. 37, 273-282

A. R. Ashra, T. Doslic and M. Saheli (2011). The eccentric connectivity index of TUC4C8(R) nanotubes. MATCH
Commun. Math. Comput. Chem.. 65, 221-230

A. R. Ashra, M. Saheli and M. Ghorbani (2011). The eccentric connectivity index of nanotubes and nanotori. J. Comput.
Appl. Math.. 235, 4561-4566

G. Yu, L. Feng and A. Ilic (2011). On the eccentric distance sum of trees and unicyclic graphs. J. Math. Anal. Appl.. 375, 99-107

B. Zhou and Z. Du (2010). On eccentric connectivity index. MATCH Commun. Math. Comput. Chem.. 63, 181-198

A. Ilic and I. Gutman (2011). Eccentric connectivity index of chemical trees. MATCH Commun. Math. Comput. Chem.. 65, 731-744

M. J. Morgan, S. Mukwembi and H. C. Swart (2011). On the eccentric connectivity index of a graph. Discrete Math.. 311, 1229-1234

S. Gupta, M. Singh and A. K. Madan (2002). Eccentric distance sum: A novel graph invariant for predicting biological and
physical properties. J. Math. Anal. Appl.. 275, 386-401

I. Gutman (1994). A formula for the Wiener number of trees and its extension to graphs containing cycles. Graph Theory
Notes New York. 27, 9-15

I. Gutman and A. R. Ashra (2008). The edge version of the Szeged index. Croat. Chem. Acta. 81, 263-266

T. Pisanski and M. Randic (2010). Use of the Szeged index and the revised Szeged index for measuring network bipartivity. Discrete Appl. Math.. 158, 1936-1944

M. Randic (2002). On generalization of Wiener index for cyclic structures. Acta Chim. Slov.. 49, 483-496

H. Youse-Azari, M. H. Khalifeh and A. R. Ashra (2011). Calculating the edge Wiener and edge Szeged indices of graphs. J. Comput. Appl. Math.. 235, 4866-4870

M. Aouchiche and P. Hansen (2010). on a conjecture about the Szeged index. European J. Combin.,. 31, 1662-1666

A. Ilic, S. Klavzar and M. Milanovic (2010). On distance-balanced graphs. European J. Combin.. 31, 733-737

M. Tavakoli, F. Rahbarnia and A. R. Ashra (2013). Further results on Distance-Balanced graphs. Politehn. Univ. Bucharest
Sci. Bull. Ser. A Appl. Math. Phys.. 75 (1), 77-84

K. Handa (1999). Bipartite graphs with balanced (a; b)-partitions. Ars Combin.. 51, 113-119

J. Jerebic, S. Klavzar and D. F. Rall (2008). Distance-balanced graphs. Ann. Comb.. 12, 71-79

M. Tavakoli, H. Youse-Azari and A. R. Ashra (2012). Note on edge distance-balanced graphs. Trans. Comb.. 1 (1), 1-6

R. Hammack, W. Imrich and S. Klavzar (2011). Handbook of Product Graphs. 2^nd ed., Taylor & Francis Group,.

T. Doslic (2008). Vertex-Weighted Wiener polynomials for composite graphs. Ars Math. Contemp.. 1, 66-80