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Abstract. A signed graph (marked graph) is an ordered pair S = (G, σ) (S = (G,µ)), where G =

(V,E) is a graph called the underlying graph of S and σ : E → {+,−} (µ : V → {+,−}) is a function.

For a graph G, V (G), E(G) and C(G) denote its vertex set, edge set and cut-vertex set, respectively.

The lict graph Lc(G) of a graph G = (V,E) is defined as the graph having vertex set E(G) ∪ C(G) in

which two vertices are adjacent if and only if they correspond to adjacent edges of G or one corresponds

to an edge ei of G and the other corresponds to a cut-vertex cj of G such that ei is incident with cj .

In this paper, we introduce lict sigraphs, as a natural extension of the notion of lict graph to the realm

of signed graphs. We show that every lict sigraph is balanced. We characterize signed graphs S and

S
′

for which S ∼ Lc(S), η(S) ∼ Lc(S), L(S) ∼ Lc(S′), J(S) ∼ Lc(S
′
) and T1(S) ∼ Lc(S

′
), where

η(S), L(S), J(S) and T1(S) are negation, line graph, jump graph and semitotal line sigraph of S,

respectively, and ∼ means switching equivalence.

1. Introduction

By a graph G = (V,E), we mean a finite, undirected graph without loops or multiple edges. For

graph theoretic terminology, we refer to [8]. For a graph G,V (G), E(G) and C(G) denote its vertex

set, edge set and cut-vertex set, respectively.

A signed graph or a sigraph is an ordered pair S = (G, σ), where Su = G = (V,E) is a graph called

the underlying graph of S and σ : E → {+,−} is a function. A cycle in a signed graph is said to be

positive if the product of its edges is positive. A cycle which is not positive is said to be negative. A
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signed graph is said to be balanced if every cycle in it is positive [9]. Otherwise, it is called unbalanced.

A marking of vertices of S is a function µ : V → {+,−}. A signed graph S together with a marking

µ is denoted by Sµ [4]. Given a signed graph S one can easily define a marking µ of vertices of S as

follows:

For any vertex v ∈ V (S), µ(v) =
∏

uv∈E(S)

σ(uv), the marking µ of vertices of S is called canonical

marking of S. The signed graphs have interesting connections with many classical mathematical sys-

tems [15].

The following characterization of balanced signed graphs is well known.

Theorem 1.1. [12] A signed graph S = (G, σ) is balanced if and only if there exists a marking µ of

its vertices such that each edge uv in S satisfies σ(uv) = µ(u)µ(v).

The line sigraph (or ×-line sigraph) of a signed graph S is a sigraph L(S) (or L×(S)) defined on

the line graph L(Su) by assigning to each edge ef of L(Su), the product of signs of the adjacent edges

e and f of S [2].

Proposition 1.2. [2] The line sigraph of a signed graph is balanced.

The jump graph J(G) of a graph G is the graph whose vertices are edges of G and where two vertices

of J(G) are adjacent if and only if they are nonadjacent in G. Equivalently, J(G) is the complement

of line graph L(G) [6].

The jump sigraph of a signed graph S = (G, σ) is a signed graph J(S) = (J(G), σ
′
), where for any

edge ee
′

in J(G), σ
′
(ee
′
) = σ(e)σ(e

′
) [3].

Proposition 1.3. [3] The jump signed graph of a signed graph is balanced.

The semitotal line graph T1(G) of a graph G = (V,E) is the graph whose vertex set is V ∪ E and

two vertices are adjacent in T1(G) if and only if they are adjacent edges of G or one is a vertex of G

and the other is an edge incident with it [13].

The semitotal line sigraph[7] of a sigraph S = (G, σ) is a signed graph T1(S) = (T1(G), σ
′
) where

for any edge uv of T1(G),

σ
′
(uv) =

{
σ(u)σ(v), if u, v ∈ E(G);

σ(u), if u ∈ E(G), v ∈ V (G).
The concept of switching a signed graph was introduced in [1]. Its deeper mathematical aspects

are found in [16]. Switching S with respect to a marking µ is the operation of changing the sign

of every edge of S to its opposite whenever its end vertices are of opposite signs. The signed graph

obtained in this way is denoted by Sµ(S) and is called µ − switched signed graph or just switched
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signed graph. Two signed graphs S1 = (G, σ) and S2 = (G
′
, σ
′
) are said to be isomorphic, written as

S1
∼= S2, if there exists a graph isomorphism f : G→ G

′
such that for any edge e ∈ G, σ(e) = σ

′
(f(e)).

Further, a signed graph S1 = (G, σ) switches to a signed graph S2 = (G
′
, σ
′
) (or that S1 and S2 are

switching equivalent), written S1 ∼ S2, whenever there exists a marking µ of vertices of S1 such that

Sµ(S1) ∼= S2. Note that S1 ∼ S2 implies that G ∼= G
′
, since the definition of switching does not involve

change of adjacencies in the underlying graphs of the respective signed graphs.

Two signed graphs S1 = (G, σ) and S2 = (G
′
, σ
′
) are said to be weakly isomorphic or cycle isomor-

phic [14] if there exists an isomorphism φ : G → G
′

such that the sign of every cycle Z in S1 equals

to the sign of φ(Z) in S2.

The following result is well known.

Theorem 1.4. [14] Two signed graphs S1 and S2 with the same underlying graph are switching

equivalent if and only if they are cycle isomorphic.

One of the important operations on signed graphs involves changing signs of their edges. The nega-

tion η(S) of S is a signed graph obtained from S by negating the sign of every edge of S, that is, by

changing the sign of each edge to its opposite [10].

The lict graph Lc(G) of a graphG = (V,E) is defined as the graph having the vertex set E(G)
⋃
C(G)

in which two vertices are adjacent if and only if they correspond to adjacent edges of G or one corre-

sponds to an edge ei of G and the other corresponds to a cut-vertex cj of G and ei is incident with

cj . This concept was introduced in [11].

Theorem 1.5. [11] For any graph G, we have G ∼= Lc(G) if and only if G is a cycle.

We can extend the notion of the lict graph to the realm of signed graphs to obtain the lict sigraph

as follows,

The lict sigraph Lc(S) of a signed graph S = (G, σ) has the lict graph Lc(G) as underlying graph

and for any edge uv ∈ Lc(G)

σLc(uv) =

{
σ(u)σ(v), if u, v ∈ E(G);

σ(v), if u ∈ C(G), v ∈ E(G).

The sigraph S and its Lict sigraph Lc(S) are shown in Figure 1.
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Figure 1

Theorem 1.6. [5] The graph pair (G,H) is a solution of the equation L(G) ∼= Lc(H) if and only if

the following are satisfied:

(1) Every component of H is a block, or

(2) G ∼= H∗, where H∗ is a graph obtained from H by adding one new vertex vi for each cut-vertex

ci of H and inserting an edge between vi and ci.

A graph in which any two distinct vertices are adjacent is called a complete graph. A complete

graph on n vertices is denoted by Kn.

A bipartite graph G is a graph whose vertex set V can be partitioned into two subsets V1 and V2

such that every edge of G joins V1 with V2. If G contains every edge joining V1 and V2, then G is a

complete bipartite graph. If V1 and V2 have n and m vertices in complete bipartite graph, we write

G = Kn,m.

A path Pn, is an alternating sequence of distinct vertices and edges v0, e1, v1, e2, · · · , vn−1, en, vn

beginning and ending with vertices. Further, if v0 = vn, then it is called a cycle, denoted by Cn.

The product of two graphs G(V1, E1) and H(V2, E2) is a graph having V = V1×V2 as its vertex set

such that u = (u1, u2) and v = (v1, v2) are adjacent if u1 = v1 and u2 is adjacent to v2 in H or u1 is

adjacent to v1 in G and u2 = v2.

If G and H are graphs with the property that the identification of any vertex of G with an arbitrary

vertex of H results in a unique graph up to isomorphism, then we write G •H for this graph.

Theorem 1.7. [5] The following pairs (G,H) of graphs are all satisfying the graph equation J(G) ∼=
Lc(H):

(K1,n, nK2), n ≥ 1; (K3, 3K2); (3K2,K3); (3P3,K4); (C6,K2,3); (K3,3,K3,3); (2P3, C4);

(C5, C5); (K2,3, C6); (K2 ∪ 2P3,K4− x), where x is any edge of K4; (G
′
,K2×P3), where G

′
is

the graph K2,3 together with an end edge incident with a vertex of degree 2; ((n+1)K2,K1,n), n ≥ 2;

(P4 ∪ 2K2,K3 •K2); and (P5 ∪K2, P4), where Pn is a path of order n.



Trans. Comb. 3 no. 4 (2014) 11-18 V. Mathad and K. P. Narayankar 15

Theorem 1.8. [5] The pair (G,H) is a solution of the graph equation T1(G) ∼= Lc(H) if and only if

(G,H) is (nK1, nK2), for some n ≥ 1.

2. Main Results

Proposition 2.1. The lict sigraph of a signed graph is balanced.

Proof. Let (S, σ) be a signed graph. Suppose that σ
′

denotes the signing of Lc(S). Let the signing σ

of S be the marking of the vertices of Lc(S) which correspond to the edges of S and let the vertices

of Lc(S) that correspond to the cut-vertices of S be marked by +. Then by the definition of Lc(S),

we see that

σ
′
(uv) =

{
σ(u)σ(v), if u, v ∈ E(G);

σ(v), if u ∈ C(G), v ∈ E(G).

Hence by Theorem 1.1, the result follows. �

Proposition 2.2. Let S = (Kp, σ) be a signed graph with p ≥ 3. Then S is a lict sigraph if and only

if it is balanced.

Proof. If p = 3, then K3 is the underlying graph of S, which is the lict graph of K3 or K1,2. If

p ≥ 4, then then Kp is the underlying graph, which is the lict graph of K1,p−1. If S is balanced,

then let ei, 1 ≤ i ≤ p be vertices of S such that e1 is incident with even number of negative edges.

Let e1 correspond to a cut-vertex of S
′

= (K1,p−1, σ
′
) having edges ei, 2 ≤ i ≤ p such that σ

′
(ei) =

σ(e1ei), 2 ≤ i ≤ p. Then it can be verified that Lc(S′) = S. Hence, S is a lict sigraph.

The converse is true by Proposition 2.1. �

Proposition 2.3. Let S = (Km,n, σ) be a signed graph. Then S is a lict sigraph if and only if it is

balanced and m = n = 2.

Proof. A cut-vertex v of any graph H together with k ≥ 2 edges incident with it form a complete

subgraph Kk+1 in Lc(H). Since Km,n does not contain a complete subgraph Kl, l ≥ 3, it follows that

Km,n is a lict graph of a block. But Lc(H) ∼= L(H) if and only if H is a block. Hence Km,n is a line

graph too. Therefore, m ≤ 2 and n ≤ 2, since otherwise, K1,3 would be an induced subgraph of Km,n,

which is a forbidden induced subgraph of a line graph. Also, Km,n 6= K2 and K1,2, since they are not

lict graphs of any graphs. Hence, G is isomorphic to K2,2. Since S is a lict sigraph, it is balanced

from Proposition 2.1.

Conversely, suppose that S = (K2,2, σ) is balanced. Since Lc(K2,2) ∼= K2,2, we construct S
′

=

(K2,2, σ
′
) according to the following cases.

Case 1. S is all positive. Then let S
′

be either all positive or all negative.

Case 2. S is all negative. Then let S
′

be such that σ
′
(ei) 6= σ

′
(ej), for every pair of nonadjacent

edges ei and ej .

Case 3. σ(fi) = σ(fj), for every pair of nonadjacent edges fi and fj . Then let σ
′
(ei) 6= σ

′
(ej), for

every pair of nonadjacent edges ei and ej .
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Case 4. σ(fi) 6= σ(fj), for every pair of nonadjacent edges fi and fj . Then let σ
′
(e) = + for exactly

one edge or σ
′
(e) = − for exactly one edge.

In all the above cases, we have Lc(S
′
) ∼= S. Hence S is a lict sigraph. �

Proposition 2.4. Let S = (G, σ), be a signed graph. Then S ∼ Lc(S) if and only if S is balanced

and G is a cycle.

Proof. Suppose that S ∼ Lc(S). This implies that G ∼= Lc(G). From Theorem 1.5, it follows that G

is a cycle. Also by Proposition 2.1, Lc(S) is balanced. Since S ∼ Lc(S), it follows by Theorem 1.4,

that S is balanced.

Conversely, suppose that G is a cycle. Then by Theorem 1.5, G ∼= Lc(G). Now, since S is any

balanced signed graph with the underlying graph G, and by Proposition 2.1, Lc(S) is balanced signed

graph with the underlying graph Lc(G), the result follows from Theorem 1.4. �

Proposition 2.5. Let S = (G, σ) be a signed graph. Then η(S) ∼ Lc(S) if and only if either S is

unbalanced and G is an odd cycle or S is balanced and G is an even cycle.

Proof. Suppose that η(S) ∼ Lc(S). Then G ∼= Lc(G) and hence by Theorem 1.5, G is a cycle. By

Proposition 2.1, Lc(S) is balanced. Now, if S is a balanced signed graph with underlying graph

G = Cn, where n is odd, then η(S) is unbalanced, by definitions. Next, if S is unbalanced signed

graph with underlying graph G = Cn, where n is even, then also η(S) is unbalanced. Hence in both of

the cases, η(S) being unbalanced cannot be switching equivalent to Lc(S), which is balanced. Hence

either S is unbalanced and G is an odd cycle or S is balanced and G is an even cycle.

Conversely, suppose that for a signed graph S = (G, σ), either S is unbalanced and G is an odd

cycle or S is balanced and G is an even cycle. Then clearly η(S) is balanced. From Proposition 2.1,

Lc(S) is balanced. Also by Theorem 1.5, G ∼= Lc(G). Hence the result follows from Theorem 1.4. �

Theorem 2.6. Let S = (G, σ) and S
′

= (H,σ
′
) be two signed graphs. Then L(S) ∼ Lc(S

′
) if and

only if the conditions of Theorem 1.6 are satisfied.

Proof. Suppose that L(S) ∼ Lc(S
′
) for signed graphs S = (G, σ) and S

′
= (H,σ

′
). Then L(G) ∼=

Lc(H). Thus, by Theorem 1.6, conditions of Theorem 1.6 are satisfied.

Conversely, suppose that conditions (1) and (2) of Theorem 1.6 hold for graphs G and H. Then

by Theorem 1.6, L(G) ∼= Lc(H). Thus, by Proposition 1.2 and Proposition 2.1, L(S) and Lc(S
′
)

are balanced, with underlying graphs L(G) and Lc(H), respectively. So, L(S) and Lc(S
′
) are cycle

isomorphic. Hence the result follows from Theorem 1.4. �

Theorem 2.7. Let S = (G, σ) and S
′

= (H,σ
′
) be two signed graphs. Then J(S) ∼ Lc(S

′
) if and

only if (G,H) is any of the pairs mentioned in Theorem 1.7.

Proof. Suppose that J(S) ∼ Lc(S
′
). Then J(G) ∼= Lc(H) and result follows from Theorem 1.7.

Conversely, suppose that (G,H) is any of the pairs in the statement of the Theorem 1.7. Then by

Theorem 1.7, J(G) ∼= Lc(H). Consider any signed graphs S and S
′

with underlying graphs G and
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H, respectively. By Proposition 1.3 and Proposition 2.1, J(S) and Lc(S
′
) are balanced and hence

cycle isomorphic with underlying graphs J(G) and Lc(H), respectively. Hence the result follows from

Theorem 1.4. �

Theorem 2.8. Let S = (G, σ) and S
′

= (H,σ
′
) be two signed graphs. Then T1(S) ∼ Lc(S

′
) if and

only if (G,H) is (nK1, nK2), for some n ≥ 1.

Proof. Suppose that T1(S) ∼ Lc(S
′
). Then T1(G) ∼= Lc(H) and the result follows from Theorem 1.8.

Conversely, suppose that (G,H) is (nK1, nK2), for some n ≥ 1. Then by Theorem 1.8, T1(G) ∼=
Lc(H). Since both T1(G) and Lc(H) are totally disconnected graphs, it follows that for any signed

graphs S and S
′

with underlying graphs G and H respectively, T1(S) ∼ Lc(S
′
). �
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