Nonexistence of two circulant weighing matrices of weight 81$^{1}$

Document Type: 75th Birthday of G. B. Khosrovshahi


1 Wright State University

2 Institute for Research in Fundamental Sciences (IPM)


‎‎In this paper‎, ‎we prove the nonexistence of two weighing matrices of‎ ‎weight 81‎, ‎namely $CW(88,81)$ and $CW(99,81)$‎. ‎We will apply two‎ ‎very different methods to do so; for the case of $CW(88,81)$‎, ‎we‎ ‎will use almost purely counting methods‎, ‎while for $CW(99,81)$‎, ‎we‎ ‎will use algebraic methods‎.


Main Subjects

[1] K. T. Arasu and A. J. Gutman, Circulant weighing matrices, Cryptogr. Commun., 2 (2010) 155-171.

[2] K. T. Arasu, J. F. Dillon, D. Jungnickel and A. Pott, The solution of the waterloo problem, J. Combin. Theory Ser. A , 71 (1995) 316-331.

[3] K. T. Arasu and S. L. Ma, Abelian difference sets without self-conjugacy, Des. Codes Cryptogr., 15  (1998) 223-230.

[4] K. T. Arasu and D. K. Ray-Chaudhuri, Multiplier theorem for a difference list, Ars Combin., 22  (1986) 119-138.

[5] R. L. McFarland, On Multipliers of Abelian Difference Sets , PhD thesis, The Ohio State University, 1970.

[6] R. C. Mullin, A Note On Balanced Weighing Matrices, 452  of Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 1975.

[7] Y. Strassler, The classi cation of circulant weighing matrices with weight 9 , PhD thesis, Bar-Ilan University, 1997.

[8] M. M. Tan, Circulant weighing matrices and multipliers , Preprint, 2014.

[9] M. M. Tan, Nonexistence of circulant weighing matrices of weight 36 and orders 60 , Preprint, (2014).

[10] V. Yorgov, On the existence of certain circulant weighing matrices, J. Combin. Math. Combin. Comput., 86  (2013) 73-85.