[1] R. B. Bapat, A. K. Lal and S. Pati, A q-analogue of the distance matrix of a tree,
Linear Algebra Appl.,
416 (2006) 799–814.
[2] R. B. Bapat and S. Sivasubramanian, Product Distance Matrix of a Graph and Squared Distance Matrix of a Tree,
Appl. Anal. Discrete Math.,
7 (2013) 285–301.
[3] R. B. Bapat and S. Sivasubramanian, Product distance matrix of a tree with matrix weights,
Linear Algebra Appl.,
468 (2015) 145-153.
[4] R. L. Graham, A. J. Hoffman and H. Hosoya, On the distance matrix of a directed graph,
J. Graph Theory,
1 (1977) 85–88.
[5] R. L. Graham and H. O. Pollak, On the addressing problem for loop switching,
Bell System Tech. J.,
50 (1971) 2495–2519.
[6] R. Grone and R. Merris, An Algorithm for the Second Immanant,
Maths. Comp.,
43 no. 168 (1984) 589–591.
[7] D. E. Littlewood,
The theory of group characters and matrix representations of groups, Reprint of the second (1950) edition, Providence, RI, 2006.
[8] R. Merris, The second immanantal polynomial and the centroid of a graph,
SIAM J. Algebraic Discrete Methods,
7 (1986) 484–503.
[9] R. Merris and W. Watkins, Inequalities and identities for generalized matrix functions,
Linear Algebra Appl.,
64 (1985) 223–242.
[10] B. E. Sagan,
The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, Second edition. Graduate Texts in Mathematics,
203, Springer-Verlag, New York, 2001.
[11] I. Schur,Über endliche Gruppen und Hermitesche Formen,
Math. Z.,
1 (1918) 184–207.
[12] S. Sivasubramanian, A q-analogue of Graham, Hoffman and Hosoyas theorem,
Electron. J. Combin.,
17 (2010) pp. 9.
[13] R. P. Stanley,
Enumerative Combinatorics,
2, Cambridge University Press, Cambridge, 1999.
[14] J. R. Stembridge, Some Conjectures For Immanants,
Canad. J. Math.,
44 (1992) 1079–1099.
[15] D. B. West,
Introduction to Graph Theory, 2nd Edition, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.