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Abstract. Let A = (ai,j)1≤i,j≤n be an n× n matrix where n ≥ 2. Let det2(A), its second immanant

be the immanant corresponding to the partition λ2 = 2, 1n−2. Let G be a connected graph with blocks

B1, B2, . . . , Bp and with q-exponential distance matrix EDG. We give an explicit formula for det2(EDG)

which shows that det2(EDG) is independent of the manner in which G’s blocks are connected. Our

result is similar in form to the result of Graham, Hoffman and Hosoya and in spirit to that of Bapat,

Lal and Pati who show that detEDT where T is a tree is independent of the structure of T and only

dependent on its number of vertices. Our result extends more generally to a product distance matrix

associated to a connected graph G. Similar results are shown for the q-analogue of T ’s laplacian and

a suitably defined matrix for arbitrary connected graphs.

1. Introduction

We consider the second immanant of n × n matrices with entries from a commutative ring. We

briefly state some needed background from the representation theory of the symmetric group Sn on

the set [n] = {1, 2, . . . , n} over C, the complex numbers. Let A = (ai,j)1≤i,j≤n be an n × n matrix

with entries from a commutative ring. In this work, all matrices will be either over Z, the integers

or over the polynomial ring R[q] where q is a variable. Let f : Sn → Z be a function. Define

detf (A) =
∑

σ∈Sn
f(σ)

∏n
i=1 ai,σ(i). We only consider functions f : Sn 7→ Z that arise as characters

of irreducible representations of Sn over C. If f is such a function, we call detf (A) as an immanant.

When f is the sgn function defined as f(π) = sgn(π) for all π ∈ Sn, then, clearly detsgn(A) is the

usual determinant of A. That is, we have detsgn(A) = detA. If f is the id or all ones function defined

as f(π) = 1 for all π ∈ Sn, then detid(A) = perm(A), where perm(A) is the permanent of A.
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The number of distinct irreducible representations of Sn is p(n), the number of partitions of the

positive integer n (see Sagan’s book [10, Proposition 1.10.1]). Thus, if λ is a partition of n, we have

functions χλ : Sn → Z. As seen, both the determinant and the permanent of a matrix are immanants,

with the determinant corresponding to the partition (1, 1, . . . , 1) and the permanent corresponding to

the partition (n).

Let n ≥ 2 and λ2 be the partition (2, 1n−2) of n. Denote as χ2 : Sn → Z, the irreducible character

of Sn corresponding to the partition λ2. Define the second immanant of A to be

det2(A) =
∑

π∈Sn
χ2(π)

∏n
i=1 ai,π(i).

For an n × n matrix A, det2(A) can be computed efficiently. Littlewood’s book [7, Chapter 6.5]

contains a nice exposition of this result. See the work of Merris and Watkins [9] as well. For an n× n

matrix A and for 1 ≤ i ≤ n, let A(i) be the (n− 1)× (n− 1) matrix obtained from A by deleting its

i-th row and its i-th column.

Theorem 1.1. Let A = (ai,j)1≤i,j≤n be an n× n matrix. Then,

det2(A) =
n∑
i=1

ai,i detA(i)− detA.

We now move on to the matrices we consider in this work. Let G be an undirected, connected graph

on the vertex set V (G) = [n]. A block of G is a maximally connected subgraph without a cut-vertex.

For a graph G, we will look at functions η : V (G)×V (G) → R where R is a commutative ring (either

Z or R[q]). A product distance on G is a function η : V (G) × V (G) → R, that satisfies the following

two conditions:

(1) η(i, i) = 1 for all i ∈ [n].

(2) if i, j ∈ V (G) are vertices such that every path from i to j passes through the cut-vertex k,

then η(i, j) = η(i, k)η(k, j).

We emphasize that we start with an undirected, connected graph and for each of its block, assign

distances to pairs of vertices within the block. Thus, we essentially have the freedom to assign distances

within each block subject to diagonal entries being 1. Rule 2 (the product rule) is then used to obtain

distances between pairs of vertices from different blocks. Because of this product rule, we call such

distances as product distances and use the terms distance and product distance interchangeably. Since

we need not have symmetric distances within each block, it is not necessary that η(i, j) = η(j, i) for

i, j ∈ V (G). As distances could be asymmetric, we could alternatively phrase our results using the

terminology of directed graphs. We prefer to use undirected graph terminology in this work.

We will form a matrix with entries being η(i, j) and sometimes write ηi,j alternatively to denote

η(i, j). Let G have blocks H1,H2, . . . , Hr. Let η(·, ·) be a product distance on G and let DG =

(ηi,j)1≤i,j≤n be the corresponding distance matrix.

The definition of product-distances is motivated by a concrete example: the exponential distance

matrix of a connected graph EDG. Given a connected graph G on the vertex set [n], let the distance
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between two vertices i, j ∈ V (G) be denoted di,j . i.e. di,j is the length of the minimum length path

from i to j in G. Define the n×n matrix EDG = (qdi,j )1≤i,j≤n as the exponential distance matrix where

q is an indeterminate and q0 = 1. It can be readily checked that η(i, j) = qdi,j is a product distance

that is symmetric. If η(·, ·) is a product distance on G and if G has blocks H1,H2, . . . ,Hr, then, each

Hi is a graph in its own right and thus has an induced product distance matrix DHi obtained by

restricting η(·, ·) to pairs of vertices, both in Hi. If the graph G is clear from the context, we abridge

DG to D.

If D is a matrix whose entries form a product distance on G, Bapat and Sivasubramanian [2] showed

that detD only depends on detDHi for individual blocks Hi of G and not on the manner in which

the Hi’s are connected.

Theorem 1.2. ( [2, Theorem 4] ) Let G be a connected graph with blocks Hi, 1 ≤ i ≤ r and product

distance matrix DG. For each such i, let the product distance matrix of each Hi be DHi. Then,

detDG =
r∏
i=1

detDHi

In particular, detDG is independent of the manner in which the blocks Hi of G are connected. In

this work, we extend this result to det2(DG) by giving an explicit formula for det2(DG) in terms of

the determinant and the second immanant of the DHi ’s (see Theorem 3.5). Our formula is identical in

form to the formula for the determinant of the distance matrix of a connected graph given by Graham,

Hoffman and Hosoya. Their formula with the relevant background appears in Subsection 2.2.

As exponential distance matrices are special cases of product distances, considering the case when

G is a tree T , we get the result that det2(EDT ) is independent of the structure of the tree T . For this

special case when G is a tree, our result is true in a more general non-commutative setting with matrix

weights on the edges ei. Let T be a tree with vertex set [n]. Let the edge ei of T have a matrix weight

Wi (for 1 ≤ i < n) and where each Wi is an s × s matrix over a commutative ring R. For i, j ∈ [n],

clearly, there is a unique path pi,j between i and j given by the sequence of edges e1, e2, . . . , er where

i ∈ e1, j ∈ er and there is a common vertex in the edges ei, ei+1 for 1 ≤ i < r. Define di,j , the distance

between vertices i and j as
∏r
i=1Wi where the product takes the order of the matrices as they appear

in pi,j into account. Note that di,j is an s× s matrix. When i = j, define di,j to be the s× s identity

matrix. Consider the ns× ns matrix DT = (di,j)1≤i,j≤n (i.e. we have a block matrix). We call DT as

the non-commutative analogue of the distance matrix of T .When the tree T is clear, we abuse notation

and write D instead of the more precise DT . Bapat and Sivasubramanian [3, Theorem 3] showed the

following.

Theorem 1.3. Let T be a tree on n vertices and for 1 ≤ i < n, let edge ei have an s×s matrix weight

Wi. Then, detDT =
∏n−1
i=1 (I −W 2

i ). In particular, detDT is independent of the structure of the tree

T and only depends on n and the weights W1,W2, . . . ,Wn−1.
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We show a second-immanant analogue of Theorem 1.3 by giving an explicit formula for det2(DT )

(see Theorem 3.8). Our proofs rely on explicit inverse results found by Bapat and Sivasubramanian

and on Theorem 1.1.

2. Second immanant of combinatorial matrices

We consider two families of matrices in this section and give relevant background on their second-

immanants. We recall that all graphs in this work are connected.

2.1. Laplacian matrices. Let G be a connected graph with adjacency matrix A and diagonal matrix

D with D(i, i) = deg(i), where deg(i) is the degree of vertex i. The laplacian of G is the matrix

L = D − A. The following result of Merris [8] is immediate when we combine Theorem 1.1 with the

Matrix Tree Theorem (see West’s book [15, Page 86]).

Corollary 2.1. Let G be a connected graph with n vertices, m edges and κ spanning trees. Let L be

its laplacian matrix. Then, det2(L) = 2mκ.

Below, we mention a special case of Corollary 2.1, when the graphs are trees. We mention this as we

generalise this case when G is a tree to the q-analogue of the laplacian of a tree (see Corollary 4.5).

Corollary 2.2. Let T be a tree on n vertices and let L be its laplacian matrix. Then, det2(L) =

2(n− 1). Hence, det2(L) only depends on n and is independent of the structure of the tree T .

2.2. Distance matrices. Let G be a connected graph with vertex set [n] and with distance matrix

D = (di,j)1≤i,j≤n. Thus di,j is the length of the shortest path between i and j in G and di,i = 0 for all

i ∈ [n]. We begin with the following result of Grone and Merris (see [6, Page 590]).

Lemma 2.3. If A = (ai,j)1≤i,j≤n is an n × n matrix such that ai,i = 0 for all 1 ≤ i ≤ n, then

det2(A) = −detA.

Thus, for distance matrices D of connected graphs G, up to sign detD = det2(D). The following

is a well known result of Graham and Pollak [5].

Theorem 2.4 (Graham and Pollak). Let T be a tree with vertex set [n] with distance matrix DT .

Then, detDT = (−1)n−1(n − 1)2n−2. Thus, detDT only depends on n and is independent of the

structure of the tree T .

Later, Graham, Hoffman and Hosoya [4] proved a more general and more attractive theorem about

the determinant of the distance matrix DG of a strongly connected digraph G as a function of the

distance matrix of its 2-connected blocks (also called blocks). Denote the sum of the cofactors of a

matrix A as cofsum(A). Graham, Hoffman and Hosoya (see [4]) showed the following.

Theorem 2.5 (Graham, Hoffman and Hosoya). Let G be a strongly connected digraph with 2-connected

blocks G1, G2, . . . , Gr. Then,
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(1) cofsum(DG) =
∏r
i=1 cofsum(DGi) and

(2) detDG =
∑r

i=1 detDGi

∏
j ̸=i cofsum(DGj ).

Graham, Hoffman and Hosoya’s theorem implies that detDG is independent of the manner in which

the blocks of G are connected. It is also easy to recover Theorem 2.4 from Theorem 2.5 (as all blocks

of T are K2, the complete graph on 2 vertices). Since DT and DG are distance matrices, all their

diagonal elements are zero. Further, q-analogues of Theorems 2.4 and 2.5 were given by Bapat, Lal

and Pati [1] and by Sivasubramanian [12] respectively. Here, each positive integer n is replaced by

the polynomial [n]q = 1+ q + q2 + · · ·+ qn−1, and [0]q = 0. Denote the q-analogues of DT and DG as

qDT and qDG, respectively. Thus, by Lemma 2.3, we have the following simple corollary.

Corollary 2.6. Let G be a connected graph on the vertex set [n] with distance matrix DG and with

qDG being the q-analogue of DG. Then, both det2(DG) and det2(qDG) are independent of the tree-like

manner of connection of its blocks.

Consider the case now when DG is the product distance matrix of a graph G. Since all the diagonal

elements of DG are 1, Lemma 2.3 is not applicable. It is these matrices whose second immanant we

find in this work.

3. The second immanant of DG and DT

Let G be a graph with blocks B1, B2, . . . , Bp and with a product distance η(·, ·). Let DG = (ηi,j)

be the matrix of product distances on G. Let the restriction of DG to vertices of Bi be denoted DBi

for all 1 ≤ i ≤ p. Assume that for all 1 ≤ i ≤ p, we have detDBi ̸= 0. That is, assume all the matrices

DBi are invertible. For each 1 ≤ i ≤ p, let D−1
Bi

= Ni. If |V (Bi)| = ni, then Ni has dimension ni × ni.

Let Mi be the matrix Ni enlarged to have dimension n × n with zeroes added for all entries outside

V (Bi).

B
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Figure 1. Decomposing G

into blocks.
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B
2

B 3

w1 (=4)

w2 (=1)

B 4

Figure 2. The block cut-

point graph of G of Figure

1.

We illustrate getting the matrixMi from Ni on an example. For the graph given in Figure 1, clearly,

there are four blocks. These are marked as B1, B2, B3 and B4 respectively. We show how to get M2

from N2. As shown in the figure, B2 is the block consisting of the edge {1, 4}. If B2 has N2 as given
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below, then we obtain M2 by padding zeroes outside all vertices of B2. As the two vertices of B2 are

1 and 4, M2 will be as given below.

N2 =

(
A B

C D

)
M2 =



A 0 0 B 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

C 0 0 D 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


R =



1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


Let G have ℓ cut vertices w1, w2, . . . , wℓ in between its blocks. In the block cutpoint graph of G

(see West’s book [15, Page 156]), let the degree of wi be di. Let R be the diagonal matrix with its

(wi, wi)-th entry being di − 1 for each 1 ≤ i ≤ ℓ. For non cut-vertices a, define the (a, a)-th entry of

R to be 0. For the graph given in Figure 1, we have its block cutpoint graph given in Figure 2. For

this graph, we have p = 4 (G has four blocks) and ℓ = 2 (G has two cut vertices). Let w1 = 4 and

w2 = 1 be the cut vertices (wi is the index of the i-th cut-vertex). From the block-cutpoint graph, we

see that d1 = 3, d2 = 2 (number of blocks incident on the wi’s). The matrix R for the graph of Figure

1 is given above.

Form an n× n matrix K =
∑p

i=1Mi −R. We reiterate below the steps required to obtain K.

(1) For each block Bi, where 1 ≤ i ≤ p, formMi by padding zeroes to the inverse matrix Ni = D−1
Bi

at all indices outside Bi.

(2) Form the diagonal matrix R from the block-cutpoint graph of G.

(3) Set K =
∑p

i=1Mi −R.

With the above definitions, we have the following result of Bapat and Sivasubramanian.

Theorem 3.1. ( [2, Theorem 6]) Let G be a connected graph with blocks B1, B2, . . . , Bp. Let DG be

the product distance matrix of G and for 1 ≤ i ≤ p, let DBi be the restriction of D to the vertices in

Bi. If detDBi ̸= 0 for all 1 ≤ i ≤ p, then, D−1
G = K.

We begin with the following simple lemma. For a matrix A, denote its trace as Trace(A).

Lemma 3.2. Let A = (ai,j)1≤i,j≤n be an invertible n× n matrix with ai,i = 1 for all i. Then,

Trace(A−1) = 1 +
det2(A)

detA
.

Proof 3.3. We use Theorem 1.1. Since ai,i = 1 for all i, det2(A) = detA · Trace(A−1) − detA,

completing the proof.

Remark 3.4. Recall the matrices Ni and Mi given at the beginning of this section. We will apply

Lemma 3.2 to the matrices Mi. Since Trace(Mi) = Trace(Ni) and the matrix Ni = D−1
Bi

, we get

Trace(Mi) = 1 +
det2(DBi)

detDBi

.
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We are now ready to prove our first main result.

Theorem 3.5. Let DG be the product distance matrix of a connected graph G with blocks B1, B2, . . . , Bp,

with the property that detDBi ̸= 0 for all 1 ≤ i ≤ p. Then,

det2(DG) =
∑p

i=1

[
det2(DBi)

∏
j ̸=i detDBj

]
.

In particular, det2(DG) is independent of the tree-like manner of connection of G’s blocks.

Proof 3.6. Since the (i, i)-th element of DG is 1 for all i, using Theorems 1.1 and 3.1, we have

det2(DG) = detDG · Trace(K)− detDG = detDG (Trace(K)− 1).

By definition, we have Trace(K) =
∑p

i=1 Trace(Mi) − Trace(R). It is easy to see by induction on

the number of blocks in G that Trace(R) = p− 1. Thus,

det2(DG) = detDG

(
p∑
i=1

Trace(Mi)− p

)
= detDG

(
p∑
i=1

{
det2(DBi)

detDBi

+ 1

}
− p

)

= detDG

(
p∑
i=1

det2(DBi)

detDBi

)
=

p∑
i=1

det2(DBi)
∏
j ̸=i

detDBj .

We have used Remark 3.4 in the second line above and Theorem 1.2 in the third line. This completes

the proof.

We note that in Theorem 3.1, we do not need the product distance to be symmetric. i.e. we do

not require ηi,j = ηj,i. It is simple to see that symmetry of the product distance is not required for

Theorem 3.5 either. Our earlier proof crucially uses the fact that each diagonal entry of DG is 1 and

our explicit inverse result.

We note that Theorem 3.5 and Theorem 1.2 are for product distance matrices. They are counter-

parts of Theorem 2.5 for ordinary distance matrices with det and det2() playing the roles of cofsum()

and det respectively.

3.1. det2(DT ) for a tree T . A similar proof gives us a non-commutative analogue of Theorem 3.5

for trees as described in Section 1. Recall DT defined for a tree T on n vertices with edge ei bearing a

matrix weight Wi for 1 ≤ i < n. As each Wi is an s× s matrix, DT is an ns× ns matrix. Bapat and

Sivasubramanian showed that if for each 1 ≤ i < n, the s× s matrix (I −W 2
i ) is invertible, then the

inverse of DT can be written explicitly. To describe it, recall that if A = (ai,j)1≤i≤m,1≤j≤n is an m×n
matrix and B is a p× q matrix, then their Kronecker product A⊗B is the mp× nq matrix given by

A⊗B =


a1,1B a1,2B · · · a1,nB

a2,1B a2,2B · · · a2,nB
...

...
. . .

...

am,1B am,2B · · · am,nB


Let the degree sequence of T be d1, d2, . . . , dn and define an n × n diagonal matrix Deg by Deg =

Diag(d1, d2, . . . , dn). Define the ns×ns matrix ∆ = Deg⊗ Is (thus ∆ has n non-zero diagonal blocks,

each of size s× s). For an s× s matrix P , if the matrix I − P 2 is invertible, then it is clear that



30 Trans. Comb. 4 no. 2 (2015) 23-35 R. B. Bapat and S. Sivasubramanian

(3.1)

(
I P

P I

)−1

=

(
(I − P 2)−1 −P (I − P 2)−1

−P (I − P 2)−1 (I − P 2)−1

)
.

Recall that edge ek has an s × s matrix weight Wk attached to it. For each edge ek = {i, j} of

T , consider the following ns × ns matrix Mek which we describe in terms of s × s blocks as follows.

The (i, i)-th and (j, j)-th blocks of Mek are (I − W 2
k )

−1 and the (i, j)-th and (j, i)-th blocks are

−Wk(I −W 2
k )

−1. For other indices (a, b), define the (a, b)-block to be the s× s zero block. We have

n − 1 such matrices Mek one for each edge ek where 1 ≤ k ≤ n − 1. With these definitions, the

following inverse result was proved by Bapat and Sivasubramanian [3, Theorem 4].

Theorem 3.7. Let DT be the non-commutative analogue of the distance matrix of a tree T on n

vertices with edge ek having matrix weight Wk for 1 ≤ k ≤ n− 1. Then, D−1
T = I −∆+

∑n−1
k=1 Mek .

With this background, we can now show our next main result.

Theorem 3.8. Let T be a tree on n vertices with edge ei having an s × s matrix weight Wi and let

DT be the non-commutative analogue of its distance matrix. Recall Is is the s× s identity matrix and

for 1 ≤ i < n, define the 2s× 2s matrix Li =

(
Is Wi

Wi Is

)
. Then,

det2(DT ) =

n−1∑
i=1

det2(Li)
∏
j ̸=i

detLj

− (n− 2)(s− 1) detDT .

In particular, det2(DT ) is independent of the structure of T and only depends on n and the matrices

Wi for 1 ≤ i < n.

Proof 3.9. Using Theorem 1.1 and the fact that all diagonal entries are 1, we get, det2(DT ) = detDT ·
Trace(D−1

T )−detDT . By Theorem 3.7, Trace(D−1
T ) = Trace(I−∆+

∑n−1
k=1 Mek), where all matrices have

dimension ns×ns. Breaking this up into two terms, we get Trace(I −∆) = s(n− (2n− 2)) = s(2−n)

and the term Trace(
∑n−1

k=1 Mek). Recall the 2s × 2s matrix Lk =

(
Is Wk

Wk Is

)
, where all four block

matrices are of dimension s× s. For all 1 ≤ k < n, since Trace(Mek) = Trace(L−1
k ) and since Lk has

all diagonal entries 1, by Lemma 3.2, we get that Trace(L−1
k ) =

(
1 +

det2(Lk)

detLk

)
. Thus,

det2(DT ) = detDTTrace(D−1
T )− detDT

= detDT

(
s(2− n) +

n−1∑
k=1

{
1 +

det2(Lk)

detLk

}
− 1

)

= detDT

(
n−1∑
k=1

det2(Lk)

detLk

)
+ det(DT )(s− 1)(2− n)

=

n−1∑
i=1

det2(Li)
∏
j ̸=i

detLj

− (n− 2)(s− 1) detDT .



Trans. Comb. 4 no. 2 (2015) 23-35 R. B. Bapat and S. Sivasubramanian 31

In the last line, we have used Theorem 1.3. The proof is complete.

We note that when each Wi is the 1× 1 indeterminate wi, then Li =

(
1 wi

wi 1

)
. That is, Li is a

matrix with Li = DBi . It is easy to check that detLi = 1 − w2
i , det2(Li) = 1 + w2

i . In this case, we

recover a special case of Theorem 3.5.

3.2. Monomial immanant corresponding to λ = 2, 1n−2. In this subsection, we show that our

results can be stated in the language of a monomial immanant. To describe monomial immanants, we

need a few preliminaries from the theory of symmetric functions. We refer the reader to Stanley [13,

Chapter 7] for relevant background. Given any symmetric function f of degree n in infinitely many

variables x1, x2, · · · , we can get a function ψf : Sn → Z as follows.

Recall that each permutation π ∈ Sn can be written in cycle notation. Let π have ℓ-cycles

C1, C2, . . . , Cℓ with ti = |Ci| for 1 ≤ i ≤ ℓ. Since there is no order among the cycles Ci of π, we

assume that t1 ≥ t2 ≥ · · · ≥ tℓ. Thus, w(π) = (t1, t2, . . . , tℓ) is a partition of the positive integer n and

hence for each π ∈ Sn, we get a partition w(π) of the integer n. We write this as w(π) ⊢ n.
Symmetric functions of degree n with rational coefficients form a vector space denoted ΛnQ which

is equipped with a standard inner product. To define the inner product, consider the basis, {mλ}
for λ ⊢ n, of monomial immanants and the basis {hµ} for µ ⊢ n, of complete homogenous symmetric

functions. That is, both bases are indexed by partitions λ ⊢ n. If f, g ∈ ΛnQ, write f =
∑

λ⊢nAλmλ

and g =
∑

µ⊢nBµhµ. Their inner-product denoted ⟨f, g⟩ is defined as ⟨f, g⟩ =
∑

λ⊢nAλBλ.

Another basis for degree n symmetric functions are the power sum symmetric functions pλ for λ ⊢ n.
We are now in a position to define the map ψf : Sn → Z. Define ψf : Sn → Z by ψf (π) = ⟨f, pw(π)⟩.

Consider the partition λ2 = (2, 1n−2) and the symmetric function mλ2 . Define ψ2 = ψmλ2
. Thus

ψ2 : Sn → Z is the function obtained from the monomial symmetric functionmλ2 . For an n×n matrix

A, consider the immanant detψ2(A) defined with respect to ψ2. That is, detψ2(A) is the immanant

defined with respect to the monomial symmetric function mλ2 . Such immanants are referred to as

monomial immanants. We need the following result (see Stembridge, proof of Theorem 2.7 [14]).

Theorem 3.10. Let A = (ai,j)1≤i,j≤n be an n× n matrix. Then,

detψ2(A) =
∑n

i=1 ai,i detA(i)− n detA.

We get the following simple corollary from Theorems 3.10 and 1.1.

Corollary 3.11. Let A be an n× n matrix. Then, det2(A) = detψ2(A) + (n− 1) detA.

With this result, we get the following corollary of Theorem 3.5.

Corollary 3.12. Let DG be the product distance matrix of a connected graph G with blocks B1, B2, . . . , Bp,

with the property that detDBi ̸= 0 for all 1 ≤ i ≤ p. Then,

detψ2(DG) =
∑p

i=1

[
det2(DBi)

∏
j ̸=i detDBj

]
− (n− 1)

∏p
i=1 detDBi .

In particular, detψ2(DG) is independent of the tree-like manner of connection of G’s blocks.
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4. Corollaries

In this section, we derive some corollaries for the exponential distance matrix of a tree T and the

q-analogue of T ’s laplacian. We then give a q-analogue again for trees of Schur’s dominance theorem.

Lastly, we find det2(K) where K is the matrix appearing in Theorem 3.1.

4.1. The q-analogue of T ’s laplacian. Let G = T be a tree with exponential distance matrix EDT .

Let A be the adjacency matrix of T and D be a diagonal matrix with dv,v = deg(v) where deg(v) is

the degree of vertex v in T . Define the q-analogue of T ’s laplacian as Lq = I − qA+ q2(D− I) where

q is an indeterminate. It is easy to see that when q = 1, Lq = L, where L is the laplacian matrix of T .

Bapat, Lal and Pati (see [1, Proposition 3.3]) showed the following surprising inverse result for trees.

Their result can alternatively be proved using Theorem 3.1.

Theorem 4.1. Let T be a tree with exponential distance matrix EDT . Then ED−1
T =

1

1− q2
Lq.

Theorem 4.1 gives us the following corollary.

Corollary 4.2. Let T be a tree on n ≥ 2 vertices and let EDT be its exponential distance matrix.

Then, det2(EDT ) = (n− 1)(1− q2)n−2(1 + q2).

Proof 4.3. There are several ways to prove this. We give two of them. From Theorem 4.1, we see

that detEDT (i) = (1 − q2)n−2[1 + q2(deg(i) − 1)]. It is known that detEDT = (1 − q2)n−1. Plugging

both of these in Theorem 1.1, we get det2(EDT ) = (n− 1)(1− q2)n−2(1 + q2).

Alternatively, we use Theorem 3.5. Each block of T is K2, the complete graph on 2 vertices and

there are n − 1 such blocks. Thus, for all 1 ≤ i < n, DBi =

(
1 q

q 1

)
. It is simple to see that

detDBi = 1− q2 and that det2(DBi) = 1 + q2. The proof is complete by applying Theorem 3.5.

The second immanant det2(Lq) can also be found using the above result. We recall the following

striking theorem of Merris (see Merris and Watkins [9, Page 239]).

Theorem 4.4 (Merris). Let A be an invertible matrix. Then, detA · det2(A−1) = detA−1 · det2(A).

Let T be a tree with EDT as its exponential distance matrix and let Lq be the q-analogue of its

laplacian. Below, we present a q-analogue of Corollary 2.2.

Corollary 4.5. If T is a tree on n vertices and Lq is the q-analogue of its laplacian, then, det2(Lq) =
(n− 1)(q2 +1). Hence, det2(Lq) only depends on n, and is independent of the structure of the tree T .

Proof 4.6. It is known (see [1]), that detEDT = (1− q2)n−1, detLq = (1− q2). Using Theorems 4.4,

4.1 and combining this with Corollary 4.2 yields det2(Lq) = (n − 1)(q2 + 1). Alternatively, one can

just use Theorems 4.1 and 1.1.

We recall the following notation used in q-series theory. Let q be an indeterminate and for a positive

integer i, let [i]q = 1 + q + · · · + qi−1 with [0]q = 0. Then, the above corollary can be alternatively
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written as det2(Lq) = (n − 1)[2]q2 for trees. Clearly, setting q = 1 gives us [2]q2 = 2 and Lq = L. In

this case, we recover Corollary 2.2.

4.2. Schur’s Dominance Theorem. Schur [11] showed the following “Dominance Theorem” for

positive semidefinite matrices A = (ai,j)1≤i,j≤n. Recall that if λ is an irreducible representation of Sn

over the complex numbers C with character χλ, then, detχλ
(A) =

∑
σ∈Sn

χλ(σ)
∏n
i=1 ai,σi . Also recall

that χλ(id) is the degree of the representation λ, where id is the identity permutation in Sn. With

these, Schur’s result can be stated as follows.

Theorem 4.7. Let A be an n×n positive semidefinite matrix and let λ be an irreducible representation

of Sn with character χλ. Then, detχλ
(A) ≥ χλ(id) detA.

It is well known that the laplacian matrix L of any graph is positive semidefinite (see [15]). Similarly,

the n × n matrix Jn with all entries being 1 is also positive semidefinite. If λ2 is the irreducible

representation of Sn indexed by the partition 2, 1n−2, then by the Hook-length formula, it follows

that χ2(id) = n − 1 where χ2 denotes χλ2 , see Sagan [10]. Thus, if T is a tree on n vertices, then it

follows that det2(L) ≥ (n− 1) detL ≥ 0. As seen earlier for all graphs, when q = 1, Lq = L. Similarly

for trees T on n vertices, when q = 1, then EDT = Jn. Thus, when q = 1, we have det2(Lq) ≥ 0 for all

graphs (and hence for trees) and for trees T , we have det2(EDT ) ≥ 0. We show that for a tree, both

EDT and Lq satisfy Theorem 4.7 for all q ∈ R.

Corollary 4.8. Let T be a tree on n vertices. Let Lq be the q-analogue of its laplacian and let EDT

be its exponential distance matrix. Then, for all q ∈ R, det2( Lq) ≥ χ2(id) det( Lq) and for −1 ≤ q ≤ 1,

det2(EDT ) ≥ χ2(id) det(EDT ).

Proof 4.9. From the proof of Corollary 4.5, we have det2(Lq) = (n − 1)(1 + q2), detLq = (1 − q2)

and χ2(id) = (n − 1). Similarly, Corollary 4.2 gives us det2(EDT ) = (n − 1)(1 − q2)n−2(1 + q2) and

detEDT = (1− q2)n−1. Plugging in these values completes the proof.

4.3. det2(D−1
T ). In this subsection, we find det2(D−1

T ), where DT is the non-commutative analogue

of the distance matrix of T . Using Theorem 4.4 and Theorem 1.3, we get the following corollary.

Recall the following notation from Theorem 3.8. If Wi is the s × s “weight matrix” on edge ei, then

Li =

(
I Wi

Wi I

)
. It is simple to see that detLi = det(I −W 2

i ).

Corollary 4.10. For a tree T , let DT be the non-commutative analogue of its distance matrix and let

K = D−1
T be its inverse. Then,

(4.1) det2(K) =

∑n−1
i=1

det2(Li)
detLi

− (n− 2)(s− 1)

detDT
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Proof 4.11. From Theorem 4.4, we get det2(A−1) =
det2(A)

(detA)2
. Theorem 1.3 gives a product rule that

detDT =
∏n−1
i=1 detLi and Theorem 3.8 gives us

det2(DT ) =

n−1∑
i=1

det2(Li)
∏
j ̸=i

detLj

− (n− 2)(s− 1) detDT .

Combining these completes the proof.
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