B. Ashok and T.K. Patra (2010). Locating phase transitions in computationally hard problems. J. Physics, to appear.
D. Cvetkovi' c, M. v Cangalovi' c and V. Kovav cevi' c-Vujv
ci' c (1999). Semidefinite programming methods for the symmetric
travelling salesman problem. Integer Programming and
Combinatorial Optimization, Proc. 7th Internat. IPCO Conf.Graz,
Austria, June 1999, Lecture Notes Comp. Sci. 1610, Springer,
Berlin. , 126-136
D. Cvetkovi' c, M. v Cangalovi' c and V. Kovav cevi' c-Vujv
ci' c (1999). Complexity indices for the travelling salesman problem
based on a semidefinite relaxation. SYM-OP-IS '99, Proc. XXVI
Yugoslav Symp. Operations Research, Beograd. , 177-180
D. Cvetkovi' c, M. v Cangalovi' c and V. Kovav cevi' c-Vujv
ci' c (2004). Optimization and highly informative graph invariants. Two Topics in Mathematics, ed. B.Stankovi' c, Zbornik radova
10(18), Matemativ cki institut SANU, Beograd. , 5-39
D. Cvetkovi'c, P. Rowlinson and S. K. Simi'c (2009). An Introduction to the Theory of Graph Spectra. Cambridge
University Press, Cambridge.
D. Cvetkovi' c and S.K. Simi' c (2011). Graph spectra in computer
science. Linear Algebra Appl.. 434, 1545-1562
M. Fiedler (1973). Algebraic connectivity of graphs. Czech. J. Math.. 23 (98), 298-305
G. Gutin and A. Punnen (2002). The Travelling Salesman
Problem and Its Variations. Kluwer Academic Publishers,
Dordrecht.
E.L. Lawler, J.K. Lenstra, A.H.G. Rinnoy Kan and D.B. Shmoys (1985). The Traveling Salesman Problem. John Wiley and Sons,
Chichester - New York - Brisbane - Toronto - Singapore.
K. Ko, P. Orponen, U. Sch" oning and O. Watanabe (1986). What is a
hard instance of a computational problem ?. Structure in
Complexity Theory. Conf. 1986, Lecture Notes in Computer Science,
Springer. , 197-217
U. von Luxburg (2007). A tutorial on spectral clustering. Stat.
Comput.. 17, 395-416
C.R. Reeves and A.V. Eremeev (2004). Statistical analysis of local
search landscapes. J. Oper. Res. Soc.. 55, 687-693
B.D. Reyck and W. Herroelen (1996). On the use of the complexity index as
a measure of complexity in activity networks. Europ. J. Oper.
Res.. 91, 347-366
R. Sawilla (2008). A survey of data mining of graphs using spectral
graph theory. Defence R&D Canada, Ottawa, Technical Memorandum
TM 2008-317, Ottawa.