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ON LAPLACIAN-ENERGY-LIKE INVARIANT AND INCIDENCE ENERGY

S. PIRZADA∗ AND HILAL A. GANIE

Communicated by Ivan Gutman

Abstract. For a simple connected graph G with n-vertices having Laplacian eigenvalues µ1, µ2, . . . ,

µn−1, µn = 0, and signless Laplacian eigenvalues q1, q2, . . . , qn, the Laplacian-energy-like invariant(LEL)

and the incidence energy (IE) of a graph G are respectively defined as LEL(G) =
∑n−1

i=1

√
µi and

IE(G) =
∑n

i=1

√
qi. In this paper, we obtain some sharp lower and upper bounds for the Laplacian-

energy-like invariant and incidence energy of a graph.

1. Introduction

Let G be a finite, undirected, simple graph with n vertices and m edges having vertex set V (G) =

{v1, v2, . . . , vn}. The adjacency matrix A = (aij) of G is a (0, 1)-square matrix of order n whose (i, j)-

entry is equal to 1 if vi is adjacent to vj and equal to 0, otherwise. Let D(G) = diag(d1, d2, . . . , dn)

be the diagonal matrix associated to G, where di is the degree of vertex vi. The matrices L(G) =

D(G)−A(G) and Q(G) = D(G)+A(G) are respectively called Laplacian and signless Laplacian matri-

ces and their spectrum are respectively called Laplacian spectrum (L-spectrum) and signless Laplacian

spectrum (Q-spectrum) of the graph G. Being real symmetric, positive semi-definite matrices, we let

0 = µn ≤ µn−1 ≤ · · · ≤ µ1 and 0 ≤ qn ≤ qn−1 ≤ · · · ≤ q1 be the L-spectrum and Q-spectrum

of G, respectively. It is well known that µn=0 with multiplicity equal to the number of connected

components of G and µn−1 > 0 if and only if G is connected [9]. Moreover, for all i = 1, 2, . . . , n,

µi = qi if and only if G is bipartite. For notations and definitions in graphs, we refer to [23].
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Let I(G) be the (vertex-edge) incidence matrix of the graph G. For a graph G with vertex set

V (G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}, the (i, j)-entry of I(G) is 1 if ej is

incident with vi, and 0 otherwise. As given by Jooyandeh et al. [17] the incidence energy of the

incidence matrix I(G) of the graph G is defined as

IE = IE(G) =

n∑
k=1

√
σk,

where σ1, σ2, . . . , σn are the singular values of I(G). Recall that the singular values of a (real) matrix

M are equal to the positive square roots of the eigenvalues of MM t. Various properties and bounds

for the incidence energy were recently established in [2, 12, 13, 17, 19, 24, 26, 27, 28]. As is well-known

in spectral graph theory that I(G)I(G)t = Q(G), we can define incidence energy as

IE = IE(G) =

n∑
k=1

√
qk,

where q1, q2, . . . , qn are the eigenvalues of Q(G).

Further, Laplacian-spectrum-based graph invariant was put forward by Liu and Liu [20] as

LEL = LEL(G) =

n−1∑
k=1

√
µk

and was named Laplacian-energy-like invariant. The motivation for introducing LEL was in its

analogy to the earlier studied graph energy by Gutman [11] and Laplacian energy by Gutman and

Zhou [14]; for more details we refer to [3, 15, 16] and the references cited therein. Recently, several

mathematical investigations of LEL were communicated [12, 21, 29]. So several researchers established

many lower and upper bounds to estimate the invariant for some classes of graphs [25]. In this paper,

we obtain sharp lower bounds for the incidence energy and Laplacian-energy-like invariant which

improves some previously known lower bounds for some cases (especially in case of trees, unicyclic,

bicyclic, tricyclic, tetracyclic graphs). We also obtain upper bounds for these invariants.

2. Bounds on Laplacian-energy-like invariant

In this section, we obtain upper and lower bounds for the Laplacian-energy-like invariant of a graph.

First we start with the following observation by Das [8].

Lemma 2.1. Let G be a graph on n > 3 vertices whose distinct Laplacian eigenvalues are 0 < α < β.

Then the following hold.

(i) The multiplicity of α is n− 2 if and only if G is one of the graphs Kn
2
,n
2
or Kn−1,1.

(ii) The multiplicity of β is n− 2 if and only if G is the graph Kn − e.

The following Lemma can be found in [9, 10].
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Lemma 2.2. Let G be a connected graph of order n and let ∆ be its maximum degree. Then

∆ + 1 ≤ µ1 ≤ n. Equality holds on the left if ∆ = n− 1 and on the right if and only if G is the join

of two graphs.

The following observation can be seen in [18].

Lemma 2.3. Let G ̸= Kn be a connected graph of order n and let δ be the smallest vertex degree of

G. Then µn−1 ≤ δ, with equality if and only if G is a join of a graph on δ(G) vertices with another

graph.

The next result can be found in [7].

Lemma 2.4.(Pólya-Szegö inequality) Let (a1, a2, . . . , an) and (b1, b2, . . . , bn) be two sequences of pos-

itive real numbers such that there exist positive numbers A, a,B, b satisfying

0 < a ≤ ai ≤ A < ∞, 0 < b ≤ bi ≤ B < ∞,

for all i = 1, 2, . . . , n. Then ∑n
i=1 a

2
i

∑n
i=1 b

2
i

(
∑n

i=1 aibi)
2

≤ (ab+AB)2

4abAB
.(2.1)

The equality holds in (2.1) if and only if p =
n.A

a

(A
a
+B

b
)
, q =

n.B
b

(A
a
+B

b
)
are integers and if p of the numbers

a1, a2, . . . , an are equal to a and q of these numbers are equal to A, and if the corresponding numbers

bi are equal to b and B, respectively.

We first mention some well known lower bounds for LEL. Gutman et al. [13] obtained the following

lower bound.

(2.2) LEL(G) ≥ 2m√
n
,

with equality if and only if G ∼= Kn or G ∼= Kn.

Wang et al. [25] obtained the following lower bound.

(2.3) LEL(G) ≥

√
(2m)3

2m+ n∆2
,

where ∆ is the maximum vertex degree. Equality occurs if and only if G ∼= Kn.

It is shown in [25] that the lower bounds (2.2) and (2.3) are incomparable.

We now give a lower bound for LEL in terms of n,m, k.
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Theorem 2.5. Let G be a connected graph with n vertices and m edges having algebraic connectivity

µn−1 ≥ k. Then

(2.4) LEL(G) ≥

√
8m(n− 1)

√
kn

(
√
n+

√
k)2

,

with equality if and only if G ∼= Kn.

Proof. Setting in (2.1) n = n − 1, ai =
√
µi, bi = 1, for i = 1, 2, . . . , n − 1 and a =

√
µn−1, A =

√
µ1, b = 1, B = 1, we get ∑n−1

i=1 µi
∑n−1

i=1 1

(
∑n−1

i=1

√
µi)2

≤
(
√
µn−1 +

√
µ1)

2

4
√
µ1µn−1

.

This gives,

LEL(G) ≥

√
8m(n− 1)

√
µ1µn−1

(
√
µ1 +

√
µn−1)2

.

Since, √
8m(n− 1)

√
µ1µn−1

(
√
µ1 +

√
µn−1)2

≥

√
8m(n− 1)

√
kµ1

(
√
µ1 +

√
k)2

,

it follows that

LEL(G) ≥

√
8m(n− 1)

√
kµ1

(
√
µ1 +

√
k)2

.

For x ≤ n, consider the function f(x) =
8m(n− 1)

√
kx

(
√
x+

√
k)2

.

For this function, we have

f ′(x) =
4m(n− 1)

√
k(
√
k −

√
x)

√
x(
√
x+

√
k)3

≤ 0.

That is, f(x) is a decreasing function for x ≤ n. So

f(x) ≥ f(n) =
8m(n− 1)

√
kn

(
√
n+

√
k)2

.

This gives,

LEL(G) ≥

√
8m(n− 1)

√
kn

(
√
n+

√
k)2

.

Equality occurs in (2.4) if and only if equality occurs in (2.1) and µ1 = n. That is, by Lemma 2.2

and Lemma 2.4, if and only if G is a join of two graphs and p, q are integers, where p+ q = n− 1 with

p of the numbers in µ1, µ2, . . . , µn−1 equal to µ1 and q of them equal to µn−1. For p, q integers there

are n− 1 solutions of the equation p+ q = n− 1 and for any of these integral solutions it follows from

Lemma 2.4, that equality occurs if and only if G has two distinct Laplacian eigenvalues. That is, if

and only if G ∼= Kn [4].
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Conversely if G ∼= Kn, then it is easy to see that equality holds in (2.4). □

Remark 2.6. (i). Let T be a tree of order n, n ≥ 6 with algebraic connectivity µn−1 ≥ 0.07. Then

we will show that our lower bound in (2.4) is better than the lower bound in (2.2) for the tree T . For

this we have to show that √
8m(n− 1)

√
(0.07)n

(
√
n+

√
0.07)2

≥ 2m√
n
,

that is,

80(n− 1)2
√
7n

(10
√
n+

√
7)2

≥ 4(n− 1)2

n
, as m = n− 1

that is,

20n
√
7n ≥ (10

√
n+

√
7)2,

which is true for n ≥ 6. Since for almost all trees algebraic connectivity µn−1 ≥ 0.07, it follows that

bound (2.4) is better than bound (2.2) for almost all trees.

(ii). Let G be graph of order n having m ≤ 2n(n−1)
√
n

(
√
n+1)2

edges and algebraic connectivity µn−1 ≥ 1.

Then the lower bound (2.4) is better than the lower bound in (2.2) for G. We have√
8m(n− 1)

√
kn

(
√
n+

√
k)2

≥ 2m√
n
,

that is,

8m(n− 1)
√
n

(
√
n+ 1)2

≥ 4m2

n
,

that is,

2n(n− 1)
√
n ≥ m(

√
n+ 1)2,(2.5)

which is true. In particular if G is unicyclic, bicyclic, tricyclic, tetracyclic graph, then m = n, n +

1, n+ 2, n+ 3 (respectively). It is easy to see that (2.5) holds for n ≥ 5.

Remark 2.7. (i). Let T be a tree of order n, n ≥ 3 with maximum degree ∆ ≥ n
2 and algebraic

connectivity µn−1 ≥ 0.07. Then the lower bound (2.4) is better than the lower bound (2.3) for T . We

have √
8m(n− 1)

√
kn

(
√
n+

√
k)2

≥

√
(2m)3

2m+ n∆2

that is,

80(n− 1)2
√
7n

(10
√
n+

√
7)2

≥ 8(n− 1)3

2(n− 1) + n∆2
, as m = n− 1
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that is,

n∆2 ≥ (n− 1)(10
√
n+

√
7)2

10
√
7n

− 2(n− 1)

which is true for ∆ ≥ n
2 , n ≥ 3.

(ii). Let G be a graph of order n with maximum degree ∆ ≥
√

m2(
√
n+1)2

n(n−1)
√
n

− 2m
n and algebraic

connectivity µn−1 ≥ 1. Then the bound (2.4) is better than the bound (2.3) for G. We have

8m(n− 1)
√
n

(
√
n+ 1)2

≥ 8m3

2m+ n∆2

that is,

n∆2 ≥ m2(
√
n+ 1)2

(n− 1)
√
n

− 2m(2.6)

which is true for ∆ ≥
√

m2(
√
n+1)2

n(n−1)
√
n

− 2m
n . In particular if G is unicyclic, bicyclic, tricyclic, then

m = n, n+ 1, n+ 2. It is easy to see that (2.6) holds for ∆ ≥ n
2 , n ≥ 6.

We now obtain an upper bound for LEL in terms n,m,∆, k.

Theorem 2.8. Let G be a connected graph with n vertices and m edges having maximum degree ∆

and algebraic connectivity µn−1 ≥ k. Then

LEL(G) ≤ 2
√
nk + k(n− 2) + 2m− (∆ + 1)

2
√
k

,(2.7)

with equality if and only if k = n and G ∼= Kn or k = 1 and G ∼= Kn−1,1.

Proof. Let 0 = µn < µn−1 ≤ µn−2 ≤ · · · ≤ µ2 ≤ µ1 be the Laplacian spectrum of G with µn−1 ≥ k.

Since ∆ + 1 ≤ µ1 ≤ n, we have

LEL(G) =
n−1∑
i=1

√
µi =

√
µ1 + (n− 2)

√
µn−1 +

n−2∑
i=2

(
µi − µn−1√
µi +

√
µn−1

)

≤ √
µ1 + (n− 2)

√
µn−1 +

n−2∑
i=2

(
µi − µn−1

2
√
µn−1

)

=
2
√
µ1µn−1 + (n− 2)µn−1 + 2m− µ1

2
√
µn−1

≤
2
√
nµn−1 + (n− 2)µn−1 + 2m− (∆ + 1)

2
√
µn−1

.

For x ≥ k, consider the function

f(x) =
2
√
nx+ (n− 2)x+ 2m− (∆ + 1)

2
√
x

.

For this function, we have

f ′(x) =
x(n− 2) + ∆+ 1− 2m

4x
√
x

,
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for all x ≥ k. Since (∆ + 1) + (n − 2)µn−1 ≤ µ1 + µ2 + · · · + µn−1 = 2m, it follows that f(x) is a

decreasing function for x ≥ k. So

f(x) ≤ f(k) =
2
√
nk + (n− 2)k + 2m− (∆ + 1)

2
√
k

,

which gives

LEL(G) ≤ 2
√
nk + (n− 2)k + 2m− (∆ + 1)

2
√
k

.

Equality occurs in (2.7) if and only if n = µ1 = ∆ + 1, µ2 = µ3 = · · · = µn−2 = µn−1 = k. That

is by Lemma 2.2, G is a join of two graphs having at most three distinct Laplacian eigenvalues with

∆ + 1 = µ1. If G has one distinct Laplacian eigenvalue, then G ∼= Kn, which is not possible as G is

connected. If G is a join of two graphs with ∆+1 = µ1 having two distinct Laplacian eigenvalues, then

G ∼= Kn [4]. If G is join of two graphs having three distinct Laplacian eigenvalues with ∆ + 1 = µ1,

then by Lemma 2.1, G ∼= Kn−1,1 .

Conversely if G is one of these graphs, then it is easy to see that equality occurs in (2.7). □

3. Bounds for incidence energy

In order to obtain the bounds for the incidence energy, we need the following Lemmas. Lemma 3.1

can be found in [5].

Lemma 3.1. Let G be a graph of order n having maximum degree ∆, minimum degree δ and largest

Q-eigenvalue q1. Then 2δ ≤ q1 ≤ 2∆. For a connected graph G, equality holds in either of these

inequalities if and only if G is regular.

The next observation is a well known fact [6].

Lemma 3.2. A graph G has two distinct signless Laplacian (Laplacian) eigenvalues if and only if

G ∼= Kn.

The following observation can be found in [5].

Lemma 3.3. For i = 1, 2, . . . , n, let µi and qi be the L-spectrum and Q−spectrum of the graph G.

Then µi = qi, for all i = 1, 2, . . . , n if and only if G is bipartite.

By Lemma 3.3, it is clear that IE(G) = LEL(G), if and only if G is bipartite. So, if G is bipartite,

then any result that holds for LEL(G) also holds for IE(G). Therefore in this section, we consider

non-bipartite graphs only.
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We first obtain a lower bound for IE in terms of n,m,∆, k.

Theorem 3.4. Let G be a connected non-bipartite graph with n > 2 vertices and m edges having

smallest Q-eigenvalue qn ≥ k. Then

(3.1) IE(G) ≥

√
8mn

√
2k∆

(
√
2∆ +

√
k)2

.

Proof. Setting in equation (2.1) ai =
√
qi, bi = 1, for i = 1, 2, . . . , n and a =

√
qn, A =

√
q1, b =

1, B = 1, we get ∑n
i=1 qi

∑n
i=1 1

(
∑n

i=1

√
qi)2

≤
(
√
qn +

√
q1)

2

4
√
q1qn

.

This gives,

IE(G) ≥

√
8mn

√
q1qn

(
√
q1 +

√
qn)2

.

Since, √
8mn

√
q1qn

(
√
q1 +

√
qn)2

≥

√
8mn

√
kq1

(
√
q1 +

√
k)2

,

it follows that

IE(G) ≥

√
8mn

√
kq1

(
√
q1 +

√
k)2

.

For x ≤ 2∆, consider the function

f(x) =
8mn

√
kx

(
√
x+

√
k)2

.

For this function, we have

f ′(x) =
4mn

√
k(
√
k −

√
x)

√
x(
√
x+

√
k)3

≤ 0.

That is f(x) is a decreasing function for x ≤ 2∆. So

f(x) ≥ f(2∆) =
8mn

√
2k∆

(
√
2∆ +

√
k)2

.

This gives

IE(G) ≥

√
8mn

√
2k∆

(
√
2∆ +

√
k)2

.

Equality occurs in (3.1) if and only if equality occurs in (2.1), q1 = 2∆ and qn = k. That is, by

Lemma 2.2 and Lemma 3.1, if and only if G is regular and p, q are integers, where p + q = n with p

of the numbers in q1, q2, . . . , qn equal to A = q1 and q of them equal to a = qn. For p, q integers there

are n solutions of the equation p+ q = n and for any of these integral solutions it follows from Lemma

2.4, that equality occurs if and only if G has two distinct Q-eigenvalues. By Lemma 3.2, a graph with

two distinct Q-eigenvalues is Kn, having A = q1 = 2(n− 1), p = 1 and a = qn = n− 2, q = n− 1. For
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this choice of A, a, p, q, we have from Lemma 2.2, 1 =
n
√

2(n−1)
n−2

1+
√

2(n−1)
n−2

. That is, 2(n− 2)(n− 1) = 1, which

gives, n = 3±
√
3

2 , which is not possible. So equality does not occur in (3.1) for any graph G. □

Since q1 ≤ 2∆ ≤ 2(n− 1), it follows from Theorem 3.4,

f(q1) ≥ f(2(n− 1)) =

√
8mn

√
2k(n− 1)

(
√

2(n− 1) +
√
k)2

.

Therefore we have the following observation.

Corollary 3.5. Let G be a connected non-bipartite graph with n vertices and m edges having smallest

Q-eigenvalue qn ≥ k. Then

(3.2) IE(G) ≥

√
8mn

√
2k(n− 1)

(
√

2(n− 1) +
√
k)2

.

Recall from [13] that a lower bound for IE was given as follows.

Lemma 3.6. Let G be graph with n vertices and m edges. Then

IE(G) ≥ 2m√
n
,(3.3)

with equality if and only if G ∼= Kn or G ∼= K2.

Remark 3.7. Let G be a non-bipartite graph with n vertices, smallest Q-eigenvalue qn ≥ k = 0.5

and m ≤ 2n2
√
n−1

(
√
2n−2+

√
0.5)2

. Then the bound (3.2) is better than the bound (3.3) for G. For this we need

to show that √
8mn

√
2(0.5)(n− 1)√

2(n− 1) +
√
0.5

≥ 2m√
n
,

that is,

2n2
√
n− 1 ≥ m(

√
2n− 2 +

√
0.5)2,(3.4)

which is true. In particular if G is a unicyclic, bicyclic, tricyclic, tetracyclic graph, then m =

n, n+ 1, n+ 2, n+ 3 (respectively). It is easy to see that (3.4) holds for n ≥ 5.

We now have an upper bound for IE in terms of n,m,∆, δ, k.

Theorem 3.8. Let G be a non-bipartite connected graph with n vertices, m edges having maximum

degree ∆, minimum degree δ and smallest Q-eigenvalue qn ≥ k. Then

IE(G) ≤ 2
√
2k∆+ (n− 1)k + 2m− 2δ

2
√
k

,
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with equality if and only if G ∼= Kn.

Proof. This follows by proceeding similarly as in Theorem 2.4.
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