The resistance distance and the Kirchhoff index of the $k$-th semi total point graphs

Document Type: Research Paper

Authors

1 Department of Mathematics Hunan Nornal University Changsha, Hunan 410081

2 Department of Mathematics Hunan Normal University Changsha, Hunan,410081

Abstract

‎The $k$-th semi-total point graph $R^k(G)$ of a graph $G$‎, ‎is a graph obtained from $G$ by adding $k$ vertices corresponding to each edge and connecting them to the endpoints of the edge considered‎. ‎In this paper‎, ‎we obtain formulas for the resistance distance and Kirchhoff index of $R^k(G).$‎
 

Keywords

Main Subjects


R‎. ‎Bapat (2010). Graphs and matrices. Universitext. Springer, London, Hindustan Book Agency, New Delhi.
A‎. ‎Ben-Israel ‎and‎ ‎T‎. ‎Greville (2003). Generalized inverses‎: ‎theory and applications. 2nd ed‎, ‎New York‎, ‎Springer.
C‎. ‎Bu‎, ‎L‎. ‎Sun‎, ‎J‎. ‎Zhou ‎and‎ ‎Y‎. ‎Wei (2012). ‎A note on block representations of the group inverse of Laplacian‎ ‎matrices. Electron‎. ‎J‎. ‎Linear Algebra. 23, 866-876
H‎. ‎Chen ‎and‎ ‎F‎. ‎Zhang (2007). ‎Resistance distance and the normalized Laplacian spectrum. Discrete Appl.Math.. 155, 654-661
Q‎. ‎Deng ‎and‎ ‎H‎. ‎Chen (2013). ‎On the Kirchhoff index of the complement of a bipartite graph. Linear Algebra Appl.. 439, 167-173
L‎. ‎Feng‎, ‎I‎. ‎Gutman ‎and‎ ‎G‎. ‎Yu (2013). ‎Degree Kirchhoff index of unicyclic graphs. MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem.. 69, 629-648
X‎. ‎Gao‎, ‎Y‎. ‎Luo ‎and‎ ‎W Liu‎ (2012). ‎Kirchhoff index in line‎, ‎subdivision and total graphs of a regular graph. Discrete Appl‎. ‎Math.. 160, 560-565
I‎. ‎Gutman‎, ‎L‎. ‎Feng ‎and‎ ‎G‎. ‎Yu (2012). ‎Degree resistance distance of unicyclic graphs. Trans‎. ‎Combin.. 1 (2), 27-40
S. R‎. ‎Joe,‎‎ ‎S. P‎. ‎Hande‎, ‎I. Gutman and B‎. ‎Bozkurt (2012). ‎Derived graphs of some graphs. Kragujevac J‎. ‎Math.. 36, 309-314
D‎. ‎J‎. ‎Klein ‎and‎ ‎M‎. ‎Randic (1993). ‎Resistance distance. J‎. ‎Math‎. ‎Chem‎.. 12, 81-95
Z‎. ‎Mehranian (2014). ‎The Laplacian polynomial and Kirchhoff index of $k$-th semi total point graphs. Iranian J‎. ‎of Mathematical Chemistry. 5, 7-15
J‎. ‎L‎. ‎Palacios (2013). ‎Upper and lower bounds for the degree-Kirchhoff index. MATCH Commun‎. ‎Math‎. ‎Comput‎. ‎Chem‎.. 70, 651-655
L. Sun‎, ‎W‎. ‎Wang‎, ‎J‎. ‎Zhou ‎and‎ ‎C‎. ‎Bu (2015). ‎Some results on resistance distance and resistance matrices. Linear Multilinear Algebra, http://dx.doi.org/10.1080/03081087.2013.877011. 63, 523-533
W‎. ‎Wang‎, ‎D‎. ‎Yang ‎and‎ ‎Y. Luo (2013). ‎The Laplacian polynomial and Kirchhoff index of graphs derived from regular graphs. Discrete Appl‎. ‎Math.. 161, 3063-3071
Y‎. ‎Yang (2014). ‎Kirchhoff index of subdivisions of graphs. Discrete‎ ‎Appl‎. ‎Math.. 171, 153-157
Y‎. ‎Yang ‎and‎ ‎D‎. ‎Klein ‎Resistance distance-based graph invariants of subdivisions and triangulations of graphs. Discrete‎ ‎Appl‎. ‎Math‎., ‎in press.
H‎. ‎Zhang‎, ‎Y‎. ‎Yang ‎and‎ ‎C‎. ‎Li (2009). ‎Kirchhoff index of composite graphs. Discrete Appl‎. ‎Math.. 157, 2918-2927
B‎. ‎Zhou ‎and‎ ‎N‎. ‎Trinajstic (2009). ‎On resistance-distance and Kirchhoff index‎. ‎Math‎. ‎Chem.. 46, 283-289