• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Advisory Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Transactions on Combinatorics
Articles in Press
Current Issue
Journal Archive
Volume Volume 7 (2018)
Volume Volume 6 (2017)
Volume Volume 5 (2016)
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 4 (2015)
Volume Volume 3 (2014)
Volume Volume 2 (2013)
Volume Volume 1 (2012)
Gholami, M., Rahimi, Z. (2016). Recursive construction of $(J,L)$ QC LDPC codes with girth 6. Transactions on Combinatorics, 5(2), 11-22. doi: 10.22108/toc.2016.8430
Mohammad Gholami; Zahra Rahimi. "Recursive construction of $(J,L)$ QC LDPC codes with girth 6". Transactions on Combinatorics, 5, 2, 2016, 11-22. doi: 10.22108/toc.2016.8430
Gholami, M., Rahimi, Z. (2016). 'Recursive construction of $(J,L)$ QC LDPC codes with girth 6', Transactions on Combinatorics, 5(2), pp. 11-22. doi: 10.22108/toc.2016.8430
Gholami, M., Rahimi, Z. Recursive construction of $(J,L)$ QC LDPC codes with girth 6. Transactions on Combinatorics, 2016; 5(2): 11-22. doi: 10.22108/toc.2016.8430

Recursive construction of $(J,L)$ QC LDPC codes with girth 6

Article 2, Volume 5, Issue 2, June 2016, Page 11-22  XML PDF (236 K)
Document Type: Research Paper
DOI: 10.22108/toc.2016.8430
Authors
Mohammad Gholami 1; Zahra Rahimi2
1Shahrekord University
2University of Shahrekord,
Abstract
‎In this paper‎, ‎a recursive algorithm is presented to generate some exponent matrices which correspond to Tanner graphs with girth at least 6‎. ‎For a $J \times L$ exponent matrix $E$‎, ‎the lower bound $Q(E)$ is obtained explicitly such that $(J,L)$ QC LDPC codes with girth at least 6 exist for any circulant permutation matrix (CPM) size $m \geq Q(E)$‎. ‎The results show that the exponent matrices constructed with our recursive algorithm have smaller lower-bound than the ones proposed recently with girth 6‎.
Keywords
‎QC LDPC codes‎; ‎Tanner graph‎; ‎exponent matrix
Main Subjects
11H71 Relations with coding theory; 11T71 Algebraic coding theory; cryptography; 94B25 Combinatorial codes; 94B Information and communication, circuits: Theory of error-correcting codes and error-detecting codes
References
[1] R. G. Gallager, Low density parity check codes, IRE Trans., 8 (1962) 21–28.

[2] R. M. Tanner, A recursive approach to low complexity codes, IEEE Trans. Inform. Theory, 27 (1981) 533–547.

[3] R. J. McEliece, D. J. C. Mackay and J. F. Cheng, Turbo decoding as instance of pearl$^{,}$s “belief propagation” algorithm, IEEE J. Sel. Areas Commun, 16 (1998) 140–152.

[4] J. L. Cheng, U. N. Peled, I. Perepelitsa and V. Pless, Explicit construction of families of LDPC codes with girth at least six, in Proc. 40th Annu. Allerton Conf. Communication, control and computing, Monticello, IL, (2002) 1024–1031.

[5] M. E. $O^{, ‎}$Sullivan, Algebraic construction of sparse matrices with large girth, IEEE Trans. Inform. Theoy, 8 (2006) 1788–1793.

[6] K. Lally, Explicit construction of Type-II QC-LDPC codes with girth at least 6, IEEE Int. Symp. on Inf. Theory, (2007) 2371–2375.

[7] B. Ammar, B. Honary, Y. Kou, J. Xu and S. Lin, Construction of low-density parity-check codes based on balanced incomplete block designs, IEEE Trans. Inform. Theoy, 50 (2004) 1257–1268.

[8] L. Lan, L. Zeng, Y. Y. Tai, L. Chen, S. Lin and K. A. Ghaffar, Construction of QC-LDPC codes for AWGN and
binary erasure channels: A finite field approach, IEEE Trans. Inform. Theoy, 53 (2007) 2429–2457.

[9] C. M. Huang, J. F. Huang and C. C. Yang, Construction of QC-LDPC codes from quadratic congruences, IEEE Comm. Lett., 12 (2008) 313–315.

[10] M. Karimi and A. H. Banihashemi, On the girth of quasi cyclic protograph LDPC codes, IEEE Trans. Inform.
Theoy, 59 (2013) 4542–4552.

[11] G. Zhang, R. Sun and X. Wang, Construction of girth-eight QC-LDPC codes from greatest common divisor, IEEE Comm. Lett., 17 (2013) 369–372.

Statistics
Article View: 3,580
PDF Download: 3,583
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.