Let $D$ be a digraph with skew-adjacency matrix $S(D)$. The skew energy of $D$ is defined as the sum of the norms of all eigenvalues of $S(D)$. Two digraphs are said to be skew equienergetic if their skew energies are equal. We establish an expression for the characteristic polynomial of the skew adjacency matrix of the join of two digraphs, and for the respective skew energy, and thereby construct non-cospectral, skew equienergetic digraphs on $n$ vertices, for all $n \geq 6$. Thus we arrive at the solution of some open problems proposed in [X. Li, H. Lian, A survey on the skew energy of oriented graphs, arXiv:1304.5707].

[1] C. Adiga, R. Balakrishnan and W. So, The skew energy of a digraph, Linear Algebra Appl., 432 (2010) 1825-1835.

[2] N. Abreu, D. M. Cardoso, I. Gutman, E. A. Martins and M. Robbiano, Bounds for the signless Laplacian energy, Linear Algebra Appl., 435 (2011) 2365-2374.

[3] X. Chen, X. Li and H. Lian, The skew energy of random oriented graphs, Linear Algebra Appl., 438 (2013) 4547-4556.

[4] X. Chen, X. Li, and H. Lian, 4-Regular oriented graphs with optimum skew energy, Linear Algebra Appl., 439 (2013) 2948-2960.

[5] S. Gong, X. Li and G. Xu, On oriented graphs with minimal skew energy, Electron. J. Linear Algebra, 27 (2014) 692-704.

[6] S. Gong and G. Xu, 3-Regular digraphs with optimum skew energy, Linear Algebra Appl., 436 (2012) 465-471.

[7] S. Gong, W. Zhang and G. Xu, 4-Regular oriented graphs with optimum skew energies, European J. Combin., 36 (2014) 77-85.

[8] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz, 103 (1978) 1-22.

[9] I. Gutman, X. Li and J. Zhang, Graph energy, in: M. Dehmer and F. Emmert-Streib (Eds.) Analysis of Complex Networks: From Biology to Linguistics, Wiley/VCH, Weinheim, 2009 145-174.

[10] I. Gutman and O. E. Polansky, Mathematical concepts in organic chemistry, Springer, Berlin, 1986.

[11] I. Gutman and B. Zhou, Laplacian energy of a graph, Linear Algebra Appl., 414 (2006) 29-37.

[12] J. He and T. Z. Huang, Note on the skew energy of oriented graphs, Trans. Comb., 4 no. 1 (2015) 57-61.

[13] Y. Hou, X. Shen and C. Zhang, Oriented unicyclic graphs with extremal skew energy, arXiv:1108.6229.

[14] G. Indulal, I. Gutman and A. Vijaykumar, On the distance energy of a graph, MATCH Commun. Math. Comput. Chem., 60 (2008) 461-472.

[15] M. R. Jo oyandeh, D. Kiani and M. Mirzakhah, Incidence energy of a graph, MATCH Commun. Math. Comput. Chem., 62 (2009) 561-572.

[16] J. Li, X. Li and H. Lian, Extremal skew energy of digraphs with no even cycles, Trans. Comb., 3 no. 1 (2014) 37-49.

[17] H. Lian and X. Li, Skew{sp ectra and skew energy of various pro ducts of graphs, Trans. Comb., 4 no. 2 (2015) 13-21.

[18] X. Li and H. Lian, A survey on the skew energy of oriented graphs, arXiv:1304.5707.

[19] X. Li and H. Lian, Skew energy of graph products and skew weighing, arXiv:1305.7305.

[20] X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, New York, 2012.

[21] H. Lian and X. Li, Skew{sp ectra and skew energy of various pro ducts of graphs, Trans. Comb., 4 no. 2 (2015) 13-21. [22] H. Mao and Y. Hou, Minimal skew energy of unicyclic graphs with prescrib ed girth and pendent vertices, J. Hunan Normal Univ., to appear.

[23] X. Shen, Y. Hou and C. Zhang, Bicyclic digraphs with extremal skew energy, Electron. J. Linear Algebra, 23 (2012) 340-355.

[24] G. X. Tian, On the skew energy of orientation of hypercubes, Linear Algebra Appl., 435 (2011) 2140-2149.

[25] X. Yang, S. Gong and G. Xu, Minimal skew energy of oriented unicyclic graphs with fixed diameter, J. Inequal. Appl., 418 (2013) 1-11.

[26] J. Zhu, Oriented unicyclic graphs with the first [n-9/2] largest skew energies, Linear Algebra Appl., 437 (2012) 2630-2649.