@article {
author = {Pirzada, Shariefuddin and A. Chat, Bilal},
title = {The condition for a sequence to be potentially $A_{L, M}$- graphic},
journal = {Transactions on Combinatorics},
volume = {6},
number = {1},
pages = {21-27},
year = {2017},
publisher = {University of Isfahan},
issn = {2251-8657},
eissn = {2251-8665},
doi = {10.22108/toc.2017.20361},
abstract = {The set of all non-increasing non-negative integer sequences $\pi=(d_1, d_2,\ldots,d_n)$ is denoted by $NS_n$. A sequence $\pi\in NS_{n}$ is said to be graphic if it is the degree sequence of a simple graph $G$ on $n$ vertices, and such a graph $G$ is called a realization of $\pi$. The set of all graphic sequences in $NS_{n}$ is denoted by $GS_{n}$. The complete product split graph on $L + M$ vertices is denoted by $\overline{S}_{L, M}=K_{L} \vee \overline{K}_{M}$, where $K_{L}$ and $K_{M}$ are complete graphs respectively on $L = \sum\limits_{i = 1}^{p}r_{i}$ and $M = \sum\limits_{i = 1}^{p}s_{i}$ vertices with $r_{i}$ and $s_{i}$ being integers. Another split graph is denoted by $S_{L, M} = \overline{S}_{r_{1}, s_{1}} \vee\overline{S}_{r_{2}, s_{2}} \vee \cdots \vee \overline{S}_{r_{p}, s_{p}}= (K_{r_{1}} \vee \overline{K}_{s_{1}})\vee (K_{r_{2}} \vee \overline{K}_{s_{2}})\vee \cdots \vee (K_{r_{p}} \vee \overline{K}_{s_{p}})$. A sequence $\pi=(d_{1}, d_{2},\ldots,d_{n})$ is said to be potentially $S_{L, M}$-graphic (respectively $\overline{S}_{L, M}$)-graphic if there is a realization $G$ of $\pi$ containing $S_{L, M}$ (respectively $\overline{S}_{L, M}$) as a subgraph. If $\pi$ has a realization $G$ containing $S_{L, M}$ on those vertices having degrees $d_{1}, d_{2},\ldots,d_{L+M}$, then $\pi$ is potentially $A_{L, M}$-graphic. A non-increasing sequence of non-negative integers $\pi = (d_{1}, d_{2},\ldots,d_{n})$ is potentially $A_{L, M}$-graphic if and only if it is potentially $S_{L, M}$-graphic. In this paper, we obtain the sufficient condition for a graphic sequence to be potentially $A_{L, M}$-graphic and this result is a generalization of that given by J. H. Yin on split graphs.},
keywords = {Split graph,complete product split graph,potentially $H$-graphic Sequences},
url = {https://toc.ui.ac.ir/article_20361.html},
eprint = {https://toc.ui.ac.ir/article_20361_5539a345ae0f45bb6974e8e9397a9145.pdf}
}