TY - JOUR
ID - 23167
TI - On the double bondage number of graphs products
JO - Transactions on Combinatorics
JA - TOC
LA - en
SN - 2251-8657
AU - Maimani, Hamidreza
AU - Koushki, Zeinab
AD -
AD - Mathematics, research and science, tehran
Y1 - 2019
PY - 2019
VL - 8
IS - 1
SP - 51
EP - 59
KW - bondage number
KW - double domination
KW - double bondage number
DO - 10.22108/toc.2018.114111.1605
N2 - A set $D$ of vertices of graph $G$ is called $double$ $dominating$ $set$ if for any vertex $v$, $|N[v]\cap D|\geq 2$. The minimum cardinality of $double$ $domination$ of $G$ is denoted by $\gamma_d(G)$. The minimum number of edges $E'$ such that $\gamma_d(G\setminus E)>\gamma_d(G)$ is called the double bondage number of $G$ and is denoted by $b_d(G)$. This paper determines that $b_d(G\vee H)$ and exact values of $b(P_n\times P_2)$, and generalized corona product of graphs.
UR - https://toc.ui.ac.ir/article_23167.html
L1 - https://toc.ui.ac.ir/article_23167_c10b003a8aa01309879f4e72bf73d795.pdf
ER -