TY - JOUR
ID - 2943
TI - Modular chromatic number of $C_m square P_n$
JO - Transactions on Combinatorics
JA - TOC
LA - en
SN - 2251-8657
AU - Paramaguru, N.
AU - Sampathkumar, R.
AD - Annamalai University
Y1 - 2013
PY - 2013
VL - 2
IS - 2
SP - 47
EP - 72
KW - modular coloring
KW - modular chromatic number
KW - Cartesian product
DO - 10.22108/toc.2013.2943
N2 - A modular $k!$-coloring, $kge 2,$ of a graph $G$ is a coloring of the vertices of $G$ with the elements in $mathbb{Z}_k$ having the property that for every two adjacent vertices of $G,$ the sums of the colors of their neighbors are different in $mathbb{Z}_k.$ The minimum $k$ for which $G$ has a modular $k!$-coloring is the modular chromatic number of $G.$ Except for some special cases, modular chromatic number of $C_msquare P_n$ is determined.
UR - https://toc.ui.ac.ir/article_2943.html
L1 - https://toc.ui.ac.ir/article_2943_5fa15d9e433e3cf4e5d1849c0214c4df.pdf
ER -