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Abstract. In this paper, by using the degree sequences of graphs, we present sufficient conditions

for a graph to be Hamiltonian, traceable, Hamilton-connected or k-connected in light of numerous

topological indices such as the eccentric connectivity index, the eccentric distance sum, the connective

eccentricity index.

1. Introduction

Let G be a connected graph with vertex set V (G) and edge set E(G) such that |V | = n and |E| = m.

Let d(v) be the degree of a vertex v in G. Let d(u, v) be the distance between two vertices u and v in

G, that is, the length of the shortest path connecting u and v in G. The eccentricity ε(v) of a vertex

v is the maximum distance from v to any other vertex. Let Kn, Sn, Pn be a complete graph, a star

and a path on n vertices, respectively.

A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G. A graph

G is called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is called a Hamiltonian

path of G if P contains all the vertices of G. A graph G is called traceable if G has a Hamiltonian

path. A graph G is called Hamilton-connected if for each pair of vertices in G there is a Hamiltonian

path between them. A graph G is said to be k-connected (or k-vertex connected) if there does not

exist a set of k − 1 vertices whose removal disconnects the graph. If G and H are two vertex-disjoint

graphs, we use G ∨H to denote the join of G and H .
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The topological indices are widely used in organic chemistry and have been found to be useful

in chemical documentation, isomer discrimination, structure-property relationships, structure-activity

(SAR) relationships and pharmaceutical drug design [14, 23]. In past decades, plenty of mathematical

properties of numerous topological indices are reported such as the the matching energy [5, 6], Randić

index [24] and the Balaban index [7].

For a connected graph G, its Wiener index, denoted by W (G), is defined as

W (G) =
∑

{u,v}⊆V (G)

d(u, v) =
1

2

∑
v∈V (G)

D(v).

Here D(v) =
∑

u∈V (G) dG(u, v). It can be easily verified that D(v) ≥ d(v) + 2(n − 1 − d(v)). The

Wiener index and its modifications are well studied in the past years, see [9, 17, 21, 19, 20].

The eccentric connectivity index (ECI) [22] of a connected graph G, denoted by ξc(G), is defined as

ξc(G) =
∑

v∈V (G)

ε(v)d(v).

The eccentric distance sum (EDS) [11] of a connected graph G is defined as

ξd(G) =
∑

v∈V (G)

ε(v) ·D(v).

The connective eccentricity index (CEI) [10] of a connected graph G is defined as

ξce(G) =
∑

v∈V (G)

d(v)

ε(v)
.

The above three topological indices involving eccentricities are widely studied from mathematical

view, see [13, 18, 26, 27, 28].

In [25], Yang presented a sufficient condition for a graph to be traceable by using Wiener index.

In [12], Hua and Wang presented a sufficient condition for a graph to be traceable by using Harary

index. Li [15, 16] presented sufficient conditions in terms of the Harary index and Wiener index for a

graph to be Hamiltonian or Hamilton-connected using some proof ideas in [25].

In this paper, as a continuance of the above results, we further study the conditions for a graph

to be Hamiltonian, traceable, Hamilton-connected or k-connected in light of numerous topological

indices such as the ECI, EDS and CEI.

2. Preliminaries

We first present some lemmas that will be used later.

Lemma 2.1. [8] Let G be a graph of order n ≥ 3 with degree sequence d1 ≤ d2 ≤ · · · ≤ dn. If

dk ≤ k < n
2 ⇒ dn−k ≥ n− k, then G is Hamiltonian.

Lemma 2.2. [1] Let G be a nontrivial graph of order n ≥ 4 with degree sequence d1 ≤ d2 ≤ · · · ≤ dn.

If dk + 1 ≤ k < n+1
2 ⇒ dn−k+1 ≤ n− k − 1, then G is traceable.
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Lemma 2.3. [3] Let G be a graph of order n ≥ 4 with degree sequence d1 ≤ d2 ≤ · · · ≤ dn. If

di ≤ i+ k − 2 ⇒ dn−k+1 ≥ n− i, for 1 ≤ i ≤ 1
2(n− k + 1), then G is k-connected.

Lemma 2.4. [2] Let G be a graph of order n ≥ 4 with degree sequence d1 ≤ d2 ≤ · · · ≤ dn. If

2 ≤ k ≤ n
2 , dk−1 ≤ k ⇒ dn−k ≥ n− k + 1, then G is Hamilton-connected.

Lemma 2.5. [2, Page 210, Corollary 5] Let G = (X,Y ;E) be a bipartite graph such that X =

{x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}, n ≥ 2, and d(x1) ≤ d(x2) ≤ · · · ≤ d(xn), d(y1) ≤ d(y2) ≤ · · · ≤
d(yn). If d(xk) ≤ k < n ⇒ d(yn−k) ≥ n− k + 1, then G is Hamiltonian.

Lemma 2.6. [4] Let G be a 2-connected graph of order n ≥ 12. If m ≥
(
n−2
2

)
+ 4, then G is

Hamiltonian or G = K2 ∨ ((2K1) ∪Kn−4).

Lemma 2.7. [4] Let G be a 3-connected graph of order n ≥ 18. If m ≥
(
n−3
2

)
+ 9, then G is

Hamiltonian or G = K3 ∨ ((3K1) ∪Kn−6).

Lemma 2.8. [4] Let G be a k-connected graph of order n. If m ≥
(
n
2

)
− (k+1)(n− k− 1)/2+1, then

G is Hamiltonian.

3. Main Results

Theorem 3.1. Let G be a connected graph of order n ≥ 6.

(1) If ξc(G) ≥ n3 − 3n2 + 4n− 4m2

n > 0, then G is Hamiltonian.

(2) If ξd(G) ≤ 1
n(n−1)(n

2 + n− 4)2, then G is Hamiltonian.

(3) If ξce(G) ≥ (n− 1)n
2−3n+5

n , then G is Hamiltonian.

Proof. Suppose that G is not Hamiltonian, then from Lemma 2.1, there exists an integer 1 ≤ k ≤ n−1
2

such that dk ≤ k and dn−k ≤ n− k − 1.

(1) We consider ξc(G). Since ε(v) ≤ n− d(v), from the definition, we have

ξc(G) =
∑

v∈V (G)

ε(v)d(v) ≤
∑

v∈V (G)

(n− d(v))d(v)

= n

 ∑
v∈V (G)

d(v)

−
∑

v∈V (G)

d2(v)

≤ n

 ∑
v∈V (G)

d(v)

− 1

n

 ∑
v∈V (G)

d(v)

2

= n

 ∑
v∈V (G)

d(v)

− 4m2

n

≤ n
[
k2 + (n− 2k)(n− k − 1) + k(n− 1)

]
− 4m2

n

= n2(n− 1) + n
[
3k2 − (2n− 1)k

]
− 4m2

n
.
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Suppose f(x) = 3x2 − (2n − 1)x with 1 ≤ x ≤ 1
2(n − 1). It is easy to see that fmax(x) =

max{f(1), f(12(n−1))}. As f(1) = 4−2n, f(12(n−1)) = 1
4(1−n2), f(n−1

2 )−f(1) = −1
4(n−5)(n−3) < 0,

so we have fmax(x) = f(1). Thus, ξc(G) ≤ n2(n− 1) + n(4− 2n)− 4m2

n = n3 − 3n2 + 4n− 4m2

n , so we

get the result.

If ξc(G) = n3 − 3n2 +4n− 4m2

n , then all the inequalities in the proof should be equalities, so k = 1,

and hence d1 = 1, d2 = d3 = · · · = dn−1 = n− 2, dn = n− 1. Thus G = K1 ∨ (K1 ∪Kn−2), which is

not Hamiltonian as stated in [1]. But this graph dose not satisfy
∑

v∈V (G) d
2(v) = 1

n

(∑
v∈V (G) d(v)

)2
,

thus the equality can not hold.

(2) We consider ξd(G). Since ε(v) ≥ D(v)
n−1 , D(v) ≥ d(v) + 2(n − 1 − d(v)), from the definition, we

have

ξd(G) =
∑

v∈V (G)

ε(v) ·D(v) ≥
∑

v∈V (G)

D(v)

n− 1
·D(v)

=
1

n− 1

∑
v∈V (G)

(D(v))2

≥ 1

n− 1

∑
v∈V (G)

[
4(n− 1)2 − 4(n− 1)d(v) + (d(v))2

]
= 4n(n− 1)− 4

∑
v∈V (G)

d(v) +
1

n− 1

∑
v∈V (G)

(d(v))2

≥ 4n(n− 1)− 4
∑

v∈V (G)

d(v) +
1

n− 1
· 1
n

 ∑
v∈V (G)

d(v)

2

=
1

n(n− 1)

 ∑
v∈V (G)

d(v)

2

− 4n(n− 1)
∑

v∈V (G)

d(v) + 4n2(n− 1)2


=

1

n(n− 1)

 ∑
v∈V (G)

d(v)− 2n(n− 1)

2

.

As
∑

v∈V (G) d(v) < 2n(n− 1), we have

ξd(G) ≥ 1

n(n− 1)

[
k2 + (n− 2k)(n− k − 1) + k(n− 1)− 2n(n− 1)

]2
=

1

n(n− 1)
{2n(n− 1)−

[
k2 + (n− 2k)(n− k − 1) + k(n− 1)

]
}2

=
1

n(n− 1)

[
−3k2 + (2n− 1)k + n2 − n

]2
.

Suppose f(x) = −3x2+(2n−1)x+n2−n with 1 ≤ x ≤ 1
2(n−1). As f(1) = n2+n−4, f(n−1

2 ) = 1
4(n−

1)(5n+1), f(n−1
2 )− f(1) = 1

4(n− 3)(n− 5) > 0, so we have fmin(x) = min{f(1), f(12(n− 1))} = f(1).

Thus ξd(G) ≥ 1
n(n−1)(n

2 + n− 4)2, and we get the result.

If ξd(G) = 1
n(n−1)(n

2 + n− 4)2, then k = 1, the remaining is as in the previous proof.
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(3) We consider ξce(G). From the definition, we have

ξce(G) =
∑

v∈V (G)

d(v)

ε(v)

≤
∑

v∈V (G)

n− 1

D(v)
· d(v)

≤ (n− 1)
∑

v∈V (G)

d(v)

2(n− 1)− d(v)
.

Suppose f(x) = x
2(n−1)−x , then we have f ′(x) = 2(n−1)

[2(n−1)−x]2
> 0, and thus f(x) is strictly increasing,

therefore

ξce(G) ≤ (n− 1)

[
k2

2(n− 1)− k
+

(n− 2k)(n− k − 1)

2(n− 1)− (n− k − 1)
+

k(n− 1)

2(n− 1)− (n− 1)

]
= (n− 1)

[
k2

2n− k − 2
+

(n− 2k)(n− k − 1)

n+ k − 1
+ k

]
.

Since 1 ≤ k ≤ n−1
2 , then 2n− k − 2− (n+ k − 1) = n− 2k − 1 ≥ 0, so k2

2n−k−2 ≤ k2

n+k−1 . Further,
(n−2k)(n−k−1)

n+k−1 = (n−2k)(n+k−1−2k)
n+k−1 = n− 2k − 2k(n−2k)

n+k−1 . Therefore,

ξce(G) ≤ (n− 1)

[
k2

n+ k − 1
− 2k(n− 2k)

n+ k − 1
− k + n

]
= (n− 1)

[
k2 − 2k(n− 2k)

n+ k − 1
− k + n

]
= (n− 1)

{
k [4k − (3n− 1)]

n+ k − 1
+ n

}
.

Suppose f(x) = x[4x−(3n−1)]
n+x−1 with 1 ≤ x ≤ 1

2(n − 1). As f(1) = 5−3n
n , f(n−1

2 ) = −1
3(n + 1),

f(n−1
2 )− f(1) = − 1

3n(n− 3)(n− 5) < 0, so we have fmax(x) = max{f(1), f(12(n− 1))} = f(1). Thus

ξce(G) ≤ (n− 1)n
2−3n+5

n , and we get the result.

If ξce(G) = (n− 1)n
2−3n+5

n , then all the inequalities in the proof should be equalities, so k = 1, and

hence d1 = 1, d2 = d3 = · · · = dn−1 = n − 2, dn = n − 1. Thus G = K1 ∨ (K1 ∪Kn−2), which is not

Hamiltonian as stated in [1].

On the other hand, ε(v) ≥ D(v)
n−1 , with equality if and only if d(v, u) (for fixed v ∈ V (G)) is a constant

for all u ∈ V (G) with v ̸= u. Thus, G = K1 ∨ (K1 ∪ Kn−2) can not satisfy it, the equality can not

hold. □

Theorem 3.2. Let G be a connected graph of order n ≥ 11.

(1) If ξc(G) ≥ n3 − 5n2 + 10n− 4m2

n > 0, then G is traceable.

(2) If ξd(G) ≤ 1
n(n−1)(n

2 + 3n− 10)2, then G is traceable.

(3) If ξce(G) ≥ (n− 1)n
2−5n+12
n+1 , then G is traceable.

Proof. Suppose that G is not traceable, then by Lemma 2.2, there is an integer k ≤ n
2 such that

dk ≤ k − 1 and dn−k+1 ≤ n− k − 1. Since G is connected and dk ≤ k − 1, we have k ≥ 2.
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(1) We consider ξc(G). As in Theorem 3.1, we have

ξc(G) ≤ n

 ∑
v∈V (G)

d(v)

− 4m2

n

≤ n [k(k − 1) + (n− 2k + 1)(n− k − 1) + (k − 1)(n− 1)]− 4m2

n

= n2(n− 1)− 4m2

n
+ n

[
3k2 − (2n+ 1)k

]
.

Suppose f(x) = 3x2 − (2n + 1)x with 2 ≤ x ≤ n
2 . As f(2) = 10 − 4n, f(n2 ) = −1

4n(n + 2),

f(n2 ) − f(2) = −1
4(n − 10)(n − 4) < 0, so we have fmax(x) = max{f(2), f(n2 )} = f(2). Thus

ξc(G) ≤ n2(n− 1)− 4m2

n + n(10− 4n) = n3 − 5n2 + 10n− 4m2

n , so we get the result.

If ξc(G) = n3 − 5n2 + 10n − 4m2

n , then k = 2, and hence d1 = d2 = 1, d3 = · · · = dn−1 = n − 3,

dn = n − 1. Thus G = K1 ∨ (Kn−3 ∪ 2K1), which is not traceable. But this graph does not satisfy∑
v∈V (G) d

2(v) = 1
n

(∑
v∈V (G) d(v)

)2
, thus the equality can not hold.

(2) We consider ξd(G), as in Theorem 3.1, we have

ξd(G) ≥ 1

n(n− 1)

 ∑
v∈V (G)

d(v)− 2n(n− 1)

2

.

Since 2n(n− 1)−
∑

v∈V (G) d(v) > 0, we have

ξd(G) ≥ 1

n(n− 1)
[k(k − 1) + (n− 2k + 1)(n− k − 1) + (k − 1)(n− 1)− 2n(n− 1)]2

=
1

n(n− 1)
{2n(n− 1)− [k(k − 1) + (n− 2k + 1)(n− k − 1) + (k − 1)(n− 1)]}2

=
1

n(n− 1)

[
−3k2 + (2n+ 1)k + n(n− 1)

]2
.

Suppose f(x) = −3x2 + (2n + 1)x + n2 − n with 2 ≤ x ≤ n
2 . As f(2) = n2 + 3n − 10, f(n2 ) =

1
4n(5n− 2), f(n2 )− f(2) = 1

4(n− 4)(n− 10) ≥ 0, so we have fmin(x) = min{f(2), f(n2 )} = f(2). Thus

ξd(G) ≥ 1
n(n−1)(n

2 + 3n− 10)2, so we get the result.

If ξd(G) = 1
n(n−1)(n

2 + 3n− 10)2, then k = 2, the remaining is as in the previous proof.

(3) We consider ξce(G). As in Theorem 3.1,

ξce(G) ≤ (n− 1)
∑

v∈V (G)

d(v)

2(n− 1)− d(v)
.

Suppose f(x) = x
2(n−1)−x , then f ′(x) = 2(n−1)

[2(n−1)−x]2
> 0, so

ξce(G) ≤ (n− 1)

[
k(k − 1)

2(n− 1)− (k − 1)
+

(n− 2k + 1)(n− k − 1)

2(n− 1)− (n− k − 1)
+

(k − 1)(n− 1)

2(n− 1)− (n− 1)

]
= (n− 1)

[
k(k − 1)

2n− k − 1
+

(n− 2k + 1)(n− k − 1)

n+ k − 1
+ k − 1

]
.
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Since 2 ≤ k ≤ n
2 , then 2n−k−1−(n+k−1) = n−2k ≥ 0. As (n−2k+1)(n−k−1)

n+k−1 = (n−2k+1)(n+k−1−2k)
n+k−1 =

n− 2k + 1− 2k(n−2k+1)
n+k−1 , therefore,

ξce(G) ≤ (n− 1)

[
k(k − 1)

n+ k − 1
− 2k(n− 2k + 1)

n+ k − 1
− k + n

]
= (n− 1)

[
k(k − 1)− 2k(n− 2k + 1)

n+ k − 1
− k + n

]
= (n− 1)

{
k [4k − (3n+ 2)]

n+ k − 1
+ n

}
.

Suppose f(x) = x[4x−(3n+2)]
n+x−1 with 2 ≤ x ≤ n

2 . It is easy to see that fmax(x) = max{f(2), f(n2 )}.
As f(2) = 6(2−n)

n+1 , f(n2 ) = −n(n+2)
3n−2 , f(n2 ) − f(2) = − (n−4)(n2−11n+6)

(3n−2)(n+1) < 0, so we have fmax(x) = f(2).

Thus ξce(G) ≤ (n− 1)n
2−5n+12
n+1 , so we get the result.

If ξce(G) = (n − 1)n
2−5n+12
n+1 , then k = 2, and hence d1 = d2 = 1, d3 = · · · = dn−1 = n − 3,

dn = n− 1. Thus G = K1 ∨ (Kn−3 ∪ 2K1), which is not traceable.

On the other hand, ε(v) ≥ D(v)
n−1 , with equality if and only if d(v, u) (for fixed v ∈ V (G)) is a constant

for all u ∈ V (G) with v ̸= u. But G = K1 ∨ (Kn−3 ∪ 2K1) can not satisfy it, and the equality case

can not occur. □

Theorem 3.3. Let G be a connected graph of order n ≥ 2.

(1) If ξc(G) ≥ n3 − 3n2 + 2kn− 4m2

n > 0, then G is k-connected.

(2) If ξd(G) ≤ 1
n(n−1)(n

2 + n− 2k)2, then G is k-connected.

(3) If ξce(G) ≥ (n− 1)(3k−3n−1
n + n), then G is k-connected.

Proof. Suppose that G is not k-connected, then from Lemma 2.3, there exists an integer 1 ≤ i ≤ n−k+1
2

such that di ≤ i+ k − 2 and dn−k+1 ≤ n− i− 1. Obviously, 1 ≤ k ≤ n− 1.

(1) We consider ξc(G), as in Theorem 3.1, we have

ξc(G) ≤ n

 ∑
v∈V (G)

d(v)

− 4m2

n

≤ n [i(i+ k − 2) + (n− k − i+ 1)(n− i− 1) + (k − 1)(n− 1)]− 4m2

n

= n2(n− 1)− 4m2

n
+ 2n

[
i2 − (n− k + 1)i

]
.

Suppose f(x) = x2 − (n − k + 1)x with 1 ≤ x ≤ n−k+1
2 , then f(x) ≤ f(1) = k − n. Thus

ξc(G) ≤ n2(n− 1)− 4m2

n + 2n(k − n) = n3 − 3n2 + 2kn− 4m2

n , so we get the result.

If ξc(G) = n3−3n2+2kn− 4m2

n , then all the inequalities in the proof should be equalities, so i = 1,

d1 = k−1, d2 = · · · = dn−k+1 = n−2, dn−k+2 = · · · = dn = n−1. Thus G = (K1∪Kn−k)∨Kk−1, which

is not k-connected. But it can not satisfy
∑

v∈V (G) d
2(v) = 1

n

(∑
v∈V (G) d(v)

)2
, thus the equality can

not hold.
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(2) We consider ξd(G). As in Theorem 3.1,

ξd(G) ≥ 1

n(n− 1)

 ∑
v∈V (G)

d(v)− 2n(n− 1)

2

.

Since 2n(n− 1)−
∑

v∈V (G) d(v) > 0, then

ξd(G) ≥ 1

n(n− 1)
[i(i+ k − 2) + (n− k − i+ 1)(n− i− 1) + (k − 1)(n− 1)− 2n(n− 1)]2

=
1

n(n− 1)
{2n(n− 1)− [i(i+ k − 2) + (n− k − i+ 1)(n− i− 1) + (k − 1)(n− 1)]}2

=
1

n(n− 1)

[
−2i2 − 2i(−1 + k − n) + n(n− 1)

]2
.

Suppose f(x) = −2x2 − 2x(−1 + k − n) + n(n − 1) with 1 ≤ x ≤ n−k+1
2 , f(1) ≤ f(x) ≤ f(n−k+1

2 ),

f(1) = n(n+ 1)− 2k. Thus ξd(G) ≥ 1
n(n−1)(n(n+ 1)− 2k)2, so we get the result.

If ξd(G) = 1
n(n−1)(n

2 +n− 2k)2, then all the inequalities in the proof should be equalities, so i = 1,

the remaining is as in the previous proof.

(3) We consider ξce(G), as in Theorem 3.1, we have

ξce(G) ≤ (n− 1)
∑

v∈V (G)

d(v)

2(n− 1)− d(v)
.

Suppose f(x) = x
2(n−1)−x , f

′(x) = 2(n−1)

[2(n−1)−x]2
> 0, so

ξce(G) ≤ (n− 1)
[ i(i+ k − 2)

2(n− 1)− (i+ k − 2)
+

(n− k − i+ 1)(n− i− 1)

2(n− 1)− (n− i− 1)

+
(k − 1)(n− 1)

2(n− 1)− (n− 1)

]
= (n− 1)

[
i(i+ k − 2)

2n− k − i
+

(n− k − i+ 1)(n− i− 1)

n+ i− 1
+ k − 1

]
.

Since 1 ≤ i ≤ n−k+1
2 , then 2n− k− i− (n+ i− 1) = n− k− 2i+1 ≥ 0. Further, (n−k−i+1)(n−i−1)

n+i−1 =
(n−k−i+1)(n+i−1−2i)

n+i−1 = n− k − i+ 1− 2i(n−k−i+1)
n+i−1 .

Therefore,

ξce(G) ≤ (n− 1)

[
i(i+ k − 2)

n+ i− 1
− 2i(n− k − i+ 1)

n+ i− 1
− i+ n

]
= (n− 1)

[
i(i+ k − 2)− 2i(n− k − i+ 1)

n+ i− 1
− i+ n

]
= (n− 1)

[
i(2i+ 3k − 3n− 3)

n+ i− 1
+ n

]
.

Suppose f(x) = x(2x+3k−3n−3)
n+x−1 with 1 ≤ x ≤ n−k+1

2 , we can easily compute that fmax(x) = f(1) =
3k−3n−1

n . Thus ξce(G) ≤ (n− 1)(3k−3n−1
n + n), so we get the result.

If ξce(G) = (n − 1)(3k−3n−1
n + n), then i = 1, d1 = k − 1, d2 = · · · = dn−k+1 = n − 2, dn−k+2 =

· · · = dn = n− 1. Thus G = (K1 ∪Kn−k) ∨Kk−1, which is not k-connected.
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On the other hand, ε(v) ≥ D(v)
n−1 , with equality if and only if d(v, u) (for fixed v ∈ V (G)) is a constant

for all u ∈ V (G) with v ̸= u. But G = (K1 ∪Kn−k) ∨Kk−1 can not satisfy it, the equality can not

hold. □

Theorem 3.4. Let G be a connected graph of order n ≥ 7.

(1) If ξc(G) ≥ n3 − 3n2 + 6n− 4m2

n > 0, then G is Hamilton-connected.

(2) If ξd(G) ≤ 1
n(n−1)(n

2 + n− 6)2, then G is Hamilton-connected.

(3) If ξce(G) ≥ (n− 1)( 8n + n− 3), then G is Hamilton-connected.

Proof. Suppose that G is not Hamilton-connected, then from Lemma 2.4, there exists an integer

2 ≤ k ≤ n
2 such that dk−1 ≤ k and dn−k ≤ n− k.

(1) We consider ξc(G), as in Theorem 3.1, we have

ξc(G) ≤ n

 ∑
v∈V (G)

d(v)

− 4m2

n

≤ n [(k − 1)k + (n− 2k + 1)(n− k) + k(n− 1)]− 4m2

n

= n2(n+ 1)− 4m2

n
+ n

[
3k2 − (2n+ 3)k

]
.

Suppose f(x) = 3x2 − (2n + 3)x with 2 ≤ x ≤ n
2 . As f(2) = 6 − 4n, f(n2 ) = −1

4n(n + 6),

f(n2 ) − f(2) = −1
4(n − 6)(n − 4) < 0, so we have fmax(x) = max{f(2), f(n2 )} = f(2). Thus, ξc(G) ≤

n2(n+ 1)− 4m2

n + n(6− 4n) = n3 − 3n2 + 6n− 4m2

n , so we get the result.

If ξc(G) = n3 − 3n2 + 6n − 4m2

n , then k = 2, d1 = 2, d2 = d3 = · · · = dn−2 = n − 2, dn−1 =

dn = n − 1. Thus G = K2 ∨ (K1 ∪Kn−3), which is not Hamilton-connected. But it can not satisfy∑
v∈V (G) d

2(v) = 1
n

(∑
v∈V (G) d(v)

)2
, thus the equality can not hold.

(2) We consider ξd(G), as in Theorem 3.1, we have

ξd(G) ≥ 1

n(n− 1)

 ∑
v∈V (G)

d(v)− 2n(n− 1)

2

.

Since 2n(n− 1)−
∑

v∈V (G) d(v) > 0, then

ξd(G) ≥ 1

n(n− 1)
[k(k − 1) + (n− 2k + 1)(n− k) + k(n− 1)− 2n(n− 1)]2

=
1

n(n− 1)
{2n(n− 1)− [k(k − 1) + (n− 2k + 1)(n− k) + k(n− 1)]}2

=
1

n(n− 1)

[
−3k2 + (2n+ 3)k + n(n− 3)

]2
.

Suppose f(x) = −3x2 + (2n + 3)x + n(n − 3) with 2 ≤ x ≤ n
2 . As f(2) = n2 + n − 6, f(n2 ) =

1
4n(5n− 6), f(n2 )− f(2) = 1

4(n− 4)(n− 6) > 0, so we have fmin(x) = min{f(2), f(n2 )} = f(2). Thus

ξd(G) ≥ 1
n(n−1)(n

2 + n− 6)2, so we get the result.

If ξd(G) = 1
n(n−1)(n

2 + n− 6)2, then k = 2, the remaining is as in the previous proof.
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(3) We consider ξce(G), as in Theorem 3.1, we have

ξce(G) ≤ (n− 1)
∑

v∈V (G)

d(v)

2(n− 1)− d(v)
.

Suppose f(x) = x
2(n−1)−x , f

′(x) = 2(n−1)

[2(n−1)−x]2
> 0, so

ξce(G) ≤ (n− 1)

[
k(k − 1)

2(n− 1)− k
+

(n− 2k + 1)(n− k)

2(n− 1)− (n− k)
+

k(n− 1)

2(n− 1)− (n− 1)

]
= (n− 1)

[
k(k − 1)

2n− k − 2
+

(n− 2k + 1)(n− k)

n+ k − 2
+ k

]
.

Since 2 ≤ k ≤ n
2 , then 2n − k − 2 − (n + k − 2) = n − 2k ≥ 0. Further, (n−2k+1)(n−k)

n+k−2 =
(n−2k+1)(n+k−2−2k+2)

n+k−2 = n− 2k + 1− (2k−2)(n−2k+1)
n+k−2 .

Therefore,

ξce(G) ≤ (n− 1)

[
k(k − 1)

n+ k − 2
− (2k − 2)(n− 2k + 1)

n+ k − 2
− k + n+ 1

]
= (n− 1)

[
k(k − 1)− (2k − 2)(n− 2k + 1)

n+ k − 2
− k + n+ 1

]
= (n− 1)

{
4k2 − (3n+ 5)k + 2n+ 2

n+ k − 2
+ n+ 1

}
.

Suppose f(x) = 4x2−(3n+5)x+2n+2
n+x−2 with 2 ≤ x ≤ n

2 . As f(n2 ) = −n2+n−4
3n−4 , f(2) = 8

n − 4, f(n2 ) −
f(2) = − (n−4)(n2−7n+8)

n(3n−4) < 0. So we have fmax(x) = max{f(2), f(n2 )} = f(2). Thus ξce(G) ≤
(n− 1) [f(2) + n+ 1] = (n− 1)( 8n + n− 3), so we get the result.

If ξce(G) = (n−1)( 8n +n−3), then k = 2, d1 = 2, d2 = d3 = · · · = dn−2 = n−2, dn−1 = dn = n−1.

Thus G = K2 ∨ (K1 ∪Kn−3), which is not Hamilton-connected.

On the other hand, ε(v) ≥ D(v)
n−1 , with equality if and only if d(v, u) (for fixed v ∈ V (G)) is a constant

for all u ∈ V (G) with v ̸= u. Thus, G = K2 ∨ (K1 ∪ Kn−3) can not satisfy it, the equality can not

hold. □

Theorem 3.5. Let G = (X,Y ;E) be a connected bipartite graph with X = {x1, x2, . . . , xn}, Y =

{y1, y2, . . . , yn}, and n ≥ 2. Then we have:

(1) If ξd(G) ≤ 1
n(n−1)(n

2 + 2n− 4)2 + n(5n−2)2

n−1 , then G is Hamiltonian.

(2) If ξce(G) ≥ (n− 1)
[
1
6(n

2 − 2n+ 2) + n2

3n−2

]
, then G is Hamiltonian.

Proof. Suppose that G is not Hamiltonian, then from Lemma 2.5, there exists an integer k < n such

that d(xk) ≤ k and d(yn−k) ≤ n − k. Let N(x1) := {z1, z2, . . . zs} be the neighbors of x1, where

s = d(x1). Then d(x1, zi) = 1 for each zi ∈ N(x1), d(x1, xi) ≥ 2 for each xi with 2 ≤ i ≤ n, and

d(x1, yi) ≥ 3 for each yi ∈ Y −N(x1).

(1) We consider ξd(G). First, we have

D(x1) ≥ d(x1) + 2(n− 1) + 3(n− d(x1)) = 5n− 2− 2d(x1).
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Similarly, for each i with 2 ≤ i ≤ n and each j with 1 ≤ j ≤ n,

D(xi) ≥ d(xi) + 2(n− 1) + 3(n− d(xi)) = 5n− 2− 2d(xi).

D(yj) ≥ d(yj) + 2(n− 1) + 3(n− d(yj)) = 5n− 2− 2d(yj).

Therefore, we have

ξd(G) =
∑

v∈V (G)

ε(v) ·D(v) ≥
∑

v∈V (G)

D(v)

n− 1
·D(v) =

1

n− 1

∑
v∈V (G)

(D(v))2

=
1

n− 1

∑
xi∈X

(D(vi)
2) +

∑
yj∈Y

(D(vj)
2)


≥ 1

n− 1

{ ∑
xi∈X

[
(5n− 2)2 − 4(5n− 2)d(xi) + 4(d(xi))

2
]

+
∑
yj∈Y

[
(5n− 2)2 − 4(5n− 2)d(yj) + 4(d(yj))

2
] }

=
1

n− 1

2n(5n− 2)2 − 4(5n− 2)
∑

v∈V (G)

d(v) + 4
∑

v∈V (G)

(d(v))2


≥ 1

n− 1

2n(5n− 2)2 − 4(5n− 2)
∑

v∈V (G)

d(v) +
4

n
(

∑
v∈V (G)

d(v))2


=

1

n(n− 1)

2n2(5n− 2)2 − 4n(5n− 2)
∑

v∈V (G)

d(v) + 4(
∑

v∈V (G)

d(v))2


=

1

n(n− 1)

n(5n− 2)− 2
∑

v∈V (G)

d(v)

2

+
n(5n− 2)2

n− 1
.

Since

2
∑

v∈V (G)

d(v) ≤ 2
[
k2 + (n− k)n+ (n− k)2 + kn

]
< 2 [kn+ (n− k)n+ (n− k)n+ kn]

= 4n2 ≤ n(5n− 2),

it follows that

ξd(G) ≥ 1

n(n− 1)

[
n(5n− 2)− 2(k2 + (n− k)n+ (n− k)2 + nk)

]2
+

n(5n− 2)2

n− 1

=
1

n(n− 1)

[
−4k2 + 4nk + n(n− 2)

]2
+

n(5n− 2)2

n− 1
.

Suppose f(x) = −4x2 + 4nx + n(n − 2) with 1 ≤ x ≤ n − 1. It is easy to see that fmin(x) =

min{f(1), f(n − 1)}. As f(1) = f(n − 1), fmin(x) = f(1) = n2 + 2n − 4, thus ξd(G) ≥ 1
n(n−1)(n

2 +

2n− 4)2 + n(5n−2)2

n−1 .
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If ξd(G) = 1
n(n−1)(n

2 + 2n − 4)2 + n(5n−2)2

n−1 , then k = 1, d(x1) = 1, d(x2) = · · · = d(xn) = n,

d(y1) = d(y2) = · · · = d(yn−1) = n−1, d(yn) = n. Thus G = Kn,n−K1,n−1, which is not Hamiltonian.

On the other hand, ε(v) ≥ D(v)
n−1 , with equality if and only if d(v, u) (for fixed v ∈ V (G)) is a constant

for all u ∈ V (G) with v ̸= u. However, G = Kn,n − K1,n−1 can not satisfy it, the equality can not

hold.

(2) We consider ξce(G).

D(x1) ≥ d(x1) + 2(n− 1) + 3(n− d(x1)) = 5n− 2− 2d(x1).

Similarly, for each i with 2 ≤ i ≤ n and each j with 1 ≤ j ≤ n,

D(xi) ≥ d(xi) + 2(n− 1) + 3(n− d(xi)) = 5n− 2− 2d(xi).

D(yj) ≥ d(yj) + 2(n− 1) + 3(n− d(yj)) = 5n− 2− 2d(yj).

Therefore,

ξce(G) =
∑

v∈V (G)

d(v)

ε(v)

≤
∑
xi∈X

n− 1

D(xi)
· d(xi) +

∑
yj∈X

n− 1

D(yj)
· d(yj)

≤ (n− 1)

∑
xi∈X

d(xi)

5n− 2− 2d(xi)
+

∑
yj∈X

d(yj)

5n− 2− 2d(yj)

 .

Suppose f(x) = x
5n−2−2x , then we have f ′(x) = 5n−2

(5n−2−2x)2
> 0, so

ξce(G) ≤ (n− 1)

[
k2

5n− 2− 2k
+

(n− k)n

5n− 2− 2n
+

(n− k)2

5n− 2− 2(n− k)
+

kn

5n− 2− 2n

]
= (n− 1)

[
k2

5n− 2− 2k
+

(n− k)2

3n+ 2k − 2
+

n2

3n− 2

]
.

Since 1 ≤ k ≤ n− 1, then,

ξce(G) ≤ (n− 1)

[
k2

5(k + 1)− 2− 2k
+

(n− k)2

3(k + 1) + 2k − 2
+

n2

3n− 2

]
= (n− 1)

[
k2

3k + 3
+

(n− k)2

5k + 1
+

n2

3n− 2

]
≤ (n− 1)

[
k2

3k + 3
+

(n− k)2

3k + 3
+

n2

3n− 2

]
= (n− 1)

[
k2 + (n− k)2

3k + 3
+

n2

3n− 2

]
.

Suppose f(x) = x2+(n−x)2

3x+3 with 1 ≤ x ≤ (n−1). It is easy to see that fmax(x) = max{f(1), f(n−1)}.
As f(n− 1) = 1

3n(n
2 − 2n+ 2), f(1) = 1

6(n
2 − 2n+ 2), f(n− 1)− f(1) = − (n−2)(n2−2n+2)

6n < 0, so we

have fmax(x) = f(1).
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If ξce(G) = (n − 1)
[
1
6(n

2 − 2n+ 2) + n2

3n−2

]
, then k = 1, the remaining is as in the previous

proof. □

Theorem 3.6. Let G be a 2-connected graph of order n ≥ 12. If ξd(G) ≤ 1
n(n−1)

[
n2 + 3n− 12

]2
,

then G is Hamiltonian.

Proof. Suppose that G is not Hamiltonian and G is not K2 ∨ (2K1 ∪Kn−4), then from Lemma 2.6,

we have that m ≤
(
n−2
2

)
+ 3. As in Theorem 3.1,

ξd(G) ≥ 1

n(n− 1)

 ∑
v∈V (G)

d(v)− 2n(n− 1)

2

.

Since 2n(n− 1)−
∑

v∈V (G) d(v) > 0, then

ξd(G) ≥ 1

n(n− 1)
[2n(n− 1)− 2m]2

≥ 1

n(n− 1)

[
n2 + 3n− 12

]2
.

On the other hand, ε(v) ≥ D(v)
n−1 , with equality if and only if d(v, u) (for fixed v ∈ V (G)) is a constant

for all u ∈ V (G) with v ̸= u. Thus, K2∨(2K1∪Kn−4) can not satisfy it, the equality can not hold. □

Theorem 3.7. Let G be a 3-connected graph of order n ≥ 18. If ξd(G) ≤ 1
n(n−1)

[
n2 + 5n− 28

]2
,

then G is Hamiltonian.

Proof. Suppose that G is not Hamiltonian and G is not K3 ∨ (3K1 ∪Kn−6). Then from Lemma 2.7,

we have that m ≤
(
n−3
2

)
+ 8. Therefore,

ξd(G) ≥ 1

n(n− 1)

 ∑
v∈V (G)

d(v)− 2n(n− 1)

2

≥ 1

n(n− 1)
[2n(n− 1)− 2m]2

≥ 1

n(n− 1)

[
n2 + 5n− 28

]2
.

On the other hand, ε(v) ≥ D(v)
n−1 , with equality if and only if d(v, u) (for fixed v ∈ V (G)) is a constant

for all u ∈ V (G) with v ̸= u. Thus, K3∨(3K1∪Kn−6) can not satisfy it, the equality can not hold. □

Theorem 3.8. Let G be a k-connected graph of order n ≥ 18. If

ξd(G) ≤ 1

n(n− 1)
[n(n− 1) + (k + 1)(n− k − 1)]2 ,

then G is Hamiltonian.
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Proof. Suppose that G is not Hamiltonian, then from Lemma 2.8, we have that m ≤
(
n
2

)
− (k+1)(n−

k − 1)/2. Therefore,

ξd(G) ≥ 1

n(n− 1)

 ∑
v∈V (G)

d(v)− 2n(n− 1)

2

=
1

n(n− 1)
[2n(n− 1)− 2m]2

≥ 1

n(n− 1)
[n(n− 1) + (k + 1)(n− k − 1)]2 ,

which is a contradiction. This completes the proof. □
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