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SOME TOPOLOGICAL INDICES AND GRAPH PROPERTIES

XIAOMIN ZHU, LIHUA FENG, MINMIN LIU, WEILJUN LIU* AND YUQIN HU

Communicated by Ivan Gutman

ABSTRACT. In this paper, by using the degree sequences of graphs, we present sufficient conditions
for a graph to be Hamiltonian, traceable, Hamilton-connected or k-connected in light of numerous
topological indices such as the eccentric connectivity index, the eccentric distance sum, the connective

eccentricity index.

1. Introduction

Let G be a connected graph with vertex set V(G) and edge set E(G) such that |V| = n and |E| = m.
Let d(v) be the degree of a vertex v in G. Let d(u,v) be the distance between two vertices v and v in
G, that is, the length of the shortest path connecting v and v in G. The eccentricity e(v) of a vertex
v is the maximum distance from v to any other vertex. Let K,,S,, P, be a complete graph, a star
and a path on n vertices, respectively.

A cycle C in a graph G is called a Hamiltonian cycle of G if C' contains all the vertices of G. A graph
G is called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is called a Hamiltonian
path of G if P contains all the vertices of G. A graph G is called traceable if G has a Hamiltonian
path. A graph G is called Hamilton-connected if for each pair of vertices in GG there is a Hamiltonian
path between them. A graph G is said to be k-connected (or k-vertex connected) if there does not
exist a set of k — 1 vertices whose removal disconnects the graph. If G and H are two vertex-disjoint

graphs, we use G V H to denote the join of G and H .
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The topological indices are widely used in organic chemistry and have been found to be useful
in chemical documentation, isomer discrimination, structure-property relationships, structure-activity
(SAR) relationships and pharmaceutical drug design [14, 23]. In past decades, plenty of mathematical
properties of numerous topological indices are reported such as the the matching energy [5, 6], Randié
index [24] and the Balaban index [7].

For a connected graph G, its Wiener index, denoted by W (G), is defined as

1
WG =Y duv)= 3 > D().
{u,w}CV(G) veV(Q)

Here D(v) = >, cv(q) da(u,v). It can be easily verified that D(v) = d(v) + 2(n — 1 — d(v)). The
Wiener index and its modifications are well studied in the past years, see [9, 17, 21, 19, 20].

The eccentric connectivity index (ECI) [22] of a connected graph G, denoted by £°(G), is defined as

€@ = Y ewdw).
veV(G)
The eccentric distance sum (EDS) [11] of a connected graph G is defined as
@) = Y (v)- D).
veV(G)

The connective eccentricity index (CEI) [10] of a connected graph G is defined as

ce(ry _ d(v)
£(G) ,,2(3@ o)

The above three topological indices involving eccentricities are widely studied from mathematical
view, see [13, 18, 26, 27, 28].

In [25], Yang presented a sufficient condition for a graph to be traceable by using Wiener index.
In [12], Hua and Wang presented a sufficient condition for a graph to be traceable by using Harary
index. Li [15, 16] presented sufficient conditions in terms of the Harary index and Wiener index for a
graph to be Hamiltonian or Hamilton-connected using some proof ideas in [25].

In this paper, as a continuance of the above results, we further study the conditions for a graph

to be Hamiltonian, traceable, Hamilton-connected or k-connected in light of numerous topological
indices such as the ECI, EDS and CEI.

2. Preliminaries

We first present some lemmas that will be used later.

Lemma 2.1. [8] Let G be a graph of order n > 3 with degree sequence di < do < -+ < d,. If
dp <k < §=dy>n—k, then G is Hamiltonian.

Lemma 2.2. [1] Let G be a nontrivial graph of order n > 4 with degree sequence dy < dg < --- < d,.
Ifdi+1<k< ”TH = dp_p+1 <n—k—1, then G is traceable.
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Lemma 2.3. [3] Let G be a graph of order n > 4 with degree sequence di < do < -+ < d,. If
di<i4+k—-2=dy g1 >n—1, for1<i< %(n —k+1), then G is k-connected.

Lemma 2.4. [2] Let G be a graph of order n > 4 with degree sequence di < do < --- < d,. If
2<k<§,dg1 <k=dyr>n—k+1, then G is Hamilton-connected.

Lemma 2.5. [2, Page 210, Corollary 5] Let G = (X,Y;E) be a bipartite graph such that X =
{:E].aan ce. 7'1771}’ Y = {y17y27 o 7yn}} n 2 2; and d(.Il) S d(xQ) S . S d(l’n), d(yl) S d(?/Q) S e S
d(yn). If d(z) <k <n= d(yn—k) >n—k+1, then G is Hamiltonian.

Lemma 2.6. [4] Let G be a 2-connected graph of order n > 12. If m > ("]
Hamiltonian or G = Ko V ((2K1) U Ky—4).

2) + 4, then G is

Lemma 2.7. [4] Let G be a 3-connected graph of order n
Hamiltonian or G = K3V ((3K1) U Kp—¢).

v

18. If m > (n;3) + 9, then G is

Lemma 2.8. [4] Let G be a k-connected graph of order n. If m > ()

G is Hamiltonian.

—(k+1)(n—k—1)/24+1, then

3. Main Results

Theorem 3.1. Let G be a connected gmph of order n > 6.

(1) If €¢(G) > n® — 3n? + 4n — 4m .0, then G is Hamiltonian.
(2) If ¢4G) < o (n +n— 4)2, then G is Hamiltonian.
(3) If £&¢(G) > (n — )%, then G is Hamiltonian.

Proof. Suppose that G is not Hamiltonian, then from Lemma 2.1, there exists an integer 1 < k < "T_l
such that dp, <k and d,,_p, <n—k —1.

(1) We consider £¢(G). Since £(v) < n — d(v), from the definition, we have

€@ = Y ed) < Y (n—dv))d(v)
veV(G) veV(G)
= n Z d(v) Z d?(v
veV(G) veV(G)
2
<l S| S dw
veV(G) veEV(Q)
m2
= X aw ) -
veV(G)
4m?
< n[k2+(n—2k)(n—k—1)+k(n—1)]_T

n?(n—1)+n [3I<:2 -

4m?
n

(2n — 1)k] — —.
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Suppose f(z) = 3z% — (2n — 1)z with 1 < 2 < L(n —1). It is easy to see that fax(z) =
max{f(1), f(5(n—1))}. As f(1) = 4-2n, F(3(n-1)) = §(1-n?), fUS*) 1) = 4 =5)(n-3) <0
so we have fuax(7) = f(1). Thus, £4(G) < n?(n—1) +n(4 —2n) — =n3 —3n? 4+ 4n — ¥ so we
get the result.

If £4(G) = n3 — 3n? +4n — #, then all the inequalities in the proof should be equalities, so k = 1,
and hence dy =1, dy =ds =---=dp,-1 =n—-2,d, =n—1. Thus G = K; V (K; U K,,_3), which is
not Hamiltonian as stated in [1]. But this graph dose not satisfy 3,y d2( )=1 (ZUEV(G) d(v))Q,
thus the equality can not hold.

(2) We consider ¢4(G). Since e(v) > D) D(v) > d(v) +2(n — 1 —d(v)), from the definition, we

n—1
have
@) = Y w-bw= Y 2 opy)
veV(G) veV(G)
= Y (D)
veV(G)
> nil [4(n = 1) = 4(n = 1d(v) + (d(0))]
veV(G)
= 4dn(n—1)—4 Z d(v 1 > (d(v))?

vV
3
|
=
.4;
=ng
Q.

2
LY dw)
veV(Q) nveV)

2
= n(nl—l) (Z d(v ) —4n(n —1) Z d(v) + 4n? n1)2]

veV (G veV(G)

2
n(nl—l) Z d(v anl)] .

| veV(G)

As Y pev(e) d(v) < 2n(n —1), we have

fd(G) > n(nl—l)[k2+(n_2k)(n_k_1)+k(n_l)_2n(n—1)]2
= n(nl_l){Qn(n—l)— [k:2~|—(n—2k:)(n—l<:—1)+k(n_1)]}2
- mnl—w[—3k2+(2n—1>k+n2—n}2.

Suppose f(z) = —3x2—|—(2n Dz+n’—nwithl <z < 3(n—1). As f(1) = n®+n—4, f(%52) = 3(n—

2
D)(5n+1), f(54) = f(1) = 3(n—3)(n—5) > 0, s0 we have fu(2) = min{f(1), f(3(n—1))} = f(1).
Thus ¢4(G) > n( 1 )(n +n —4)%, and we get the result.
If ¢4(Q) = = 1)( +n —4)2, then k = 1, the remaining is as in the previous proof.
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(3) We consider £°(G). From the definition, we have

fce(G> _ Z d(:j)

veV(G) 8( )
- D(v)
veV(Q)
d(v)
< -1 .
< (-1 ) 2(n — 1) — d(v)
veV(Q)
Suppose f(z) = Q(n_ﬁ, then we have f/(z) = % > 0, and thus f(x) is strictly increasing,
therefore
k2 (n—2k)(n—k—1) kE(n—1)
ce < _ 1
&G = (-l [Q(n—l)—k dn—1)—(n—k—1)  2n—1)—(n—1)
k2 (n—2k)(n—Fk—1)
- (”_1){211—1@—2 ntk—1 +k]'
Since 1 <k < 5=, then2n —k—-2—-(n+k—-1)=n—-2k—-12>0, so ani 5 < n+k 7. Further,
(n— ?J)r(;flk D _ (o= 2k)n(zcrk11 k) _ ok — Qﬁ(fk Qf) Therefore,
k2 2k(n — 2k)
@) < (n—1 - —
@ s (-l [n—l—k—l ntk—1 ]H”]
k% — 2k(n — 2k)
= (n—l)[ I T —k—i—n}
B k[4k — (3n — 1))
= (n 1){ R +np.
Suppose f(z) = w with 1 <z < i(n—-1). As f(1) = nof(est) = —%(n—l— 1),

FEF) — F(1) = — (1 — 3)(n— 5) < 0, 50 we have fax() = ma{£(1), F(3(n — 1))} = F(1). Thus
£°(G) < (n— 1)%, and we get the result.

If £€(G) = (n— 1)%, then all the inequalities in the proof should be equalities, so k = 1, and
hencedy =1, dy=d3=---=dp—-1=n—2,d, =n—1. Thus G = K; V (K; U K,_2), which is not
Hamiltonian as stated in [1].

On the other hand, £(v) > %, with equality if and only if d(v, u) (for fixed v € V(G)) is a constant
for all u € V(G) with v # u. Thus, G = K; V (K1 U K,,_2) can not satisfy it, the equality can not
hold. O

Theorem 3.2. Let G be a connected gmph of order n > 11.
(1) If €¢(G) > n3 — 5n? + 10n — 4m -0, then G is traceable.

(2) If €4(G) < e 1)(71 +3n — 10)2 then G is traceable.
(3) If£&°(G) > (n — )%&4—12 then G is traceable.

Proof. Suppose that G is not traceable, then by Lemma 2.2, there is an integer k¥ < 5 such that

dip <k—1and d,—r+1 <n—k—1. Since G is connected and dy < k — 1, we have k > 2.
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(1) We consider £¢(G). As in Theorem 3.1, we have

4m?
€6 < nl Y dw) |-

veV(G)
4m?
< n[k(k—1)Jr(n—2k+1)(n—/c—1)+(k—1)(n—1)]—T
2 4m? 2
= n’(n—1)— — +n 3k — (2n+ 1)k] .
n
Suppose f(z) = 322 — (2n + 1)z with 2 < o < 2. As f(2) = 10 — 4n, f(%) = —in(n + 2),
f(5) = f(2) = —3(n — 10)(n — 4) < 0, so we have fmax( ) = max{f(2), f(5)} = f(2). Thus
€(G)<n?(n—1)— ﬂ +n(10 — 4n) =n3 —5n? + 10n — ¥ 50 we get the result.
If ¢€¢(G) = n3 — 5n? + 10n — T? then k& = 2, and hence d1 =dy =1, ds = =dy_1 =n-—3,

d, =n—1. Thus G = K3 V (K,—3 U2Kj), which is not traceable. But this graph does not satisfy
2
20ev (@) ?(v) =1 (Zvev(G) d(v)) , thus the equality can not hold.

(2) We consider ¢4(G), as in Theorem 3.1, we have

n(n—1)

2
c@) > 1{ 3 d(v)2n(n1)] .

Since 2n(n —1) = 3 ey (g) d(v) > 0, we have

(@) n(nl—l) (k= 1)+ (n—2k+1)(n—k—1) + (k= )(n—1) — 2n(n — 1)
- n(nl_l){zn(n ) — [k — 1)+ (n— 2k D —k — 1) + (k— 1)(n — 1)]}2
- n(nl—l) [—3k* + (2n + 1)k + n(n — 1)]2.

Suppose f(z) = =32 + 2n+ )z +n? —n with 2 <z < 2. As f(2) = n? +3n — 10, f(%) =
in(5n —2), f(2) = f(2) = 2(n—4)(n —10) > 0, so we have fun(z) = min{f(2), f(2)} = f(2). Thus
§d( ) > —L—(n? +3n — 10)2, so we get the result.

= n(n—-1)

If £4(Q) = m(n +3n — 10)2, then k = 2, the remaining is as in the previous proof.

(3) We consider £°°(G). As in Theorem 3.1,

€6 < (n-1) Y 2<n_d1()“)_d(v).
veV(Q)

Suppose f(z) = z(n_x1)_$v then f/(z) = _2nl) 50, s0

[2(n—1)—x]
. k(k — 1) (n—2k+1(n—k—-1  (k—1)(n—1)
£°(G) < (n-— 1)[( D—(k-1) 2n—-1)—(n—-k—1)  2n—-1)—(n-1)
— e 1)[k(_k_1 n—an++1l){(ﬁIk—1)+k_1
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Since2 < k < %, then 2n—k—1—(n+k—1) = n—2k > 0. As @Dk _ (n-2kt Dlatho1-2%)
n—2k+1-— M, therefore,

n+k—1
1) 2k(n—2k+1)
ce < _k;
£@) = [n—I—k:—l ntk—1 +"]
— o) k(k—1) ~2k(n-2k+1)
n+k—1
k[4k — (3n + 2)]
= —1 .
(n { n+k—1 —i—n}

Suppose f(x) = W with 2 < 2 < §. It is easy to see that fuax(z) = max{f(2), f(5)}.
As f(2) = 92 f(m) = —MmDp(m) — f(2) = S <0, 50 we have fuax(2) = £(2).
Thus £°(G) < (n — 1)%, so we get the result.

If £¢(G) = (n— 1)7"”2;57f1+12 , then k¥ = 2, and hence d; = do = 1,d3 = -+ = dp—1 = n — 3,

d, =n—1. Thus G = K; V (K,,—3 U2K7), which is not traceable.
On the other hand, e(v) > %, with equality if and only if d(v, u) (for fixed v € V(G)) is a constant
for all uw € V(G) with v # u. But G = K; V (K,,—3 U2K}) can not satisfy it, and the equality case

can not occur. O

Theorem 3.3. Let G be a connected graph of order n > 2.

(1) If €4(G) > n® — 3n? + 2kn — n2 > 0, then G is k-connected.
(2) If ¢4(G) < ol )(n +n —2k)2, then G is k-connected.
(3) If €¢(G) > (n— 1)(3E=3n=L 4 ), then G is k-connected.

Proof. Suppose that G is not k-connected, then from Lemma 2.3, there exists an integer 1 < ¢ < ”‘Tkﬂ
such that d; <i+k—2 and dy_gr1 <n—i—1. Obviously, 1 <k <n—1.

(1) We consider £¢(G), as in Theorem 3.1, we have

€@ < ol D dw —ﬂ
veV(G)
4m?
< n[i(i+k72)+(n7k7i+1)(n7i71)+(k‘—1)(n71)]77
= (n—l)—%—i—%b[z —(n—k+1)i.

Suppose f(z) = 22 — (n — k + )a:w1th1<:L‘< n=ktl then f(z) < f(1) = k —n. Thus

€(G) <n?(n—1)— M + 2n(/~€ n) =n3 —3n? + 2kn — *™= 5o we get the result.
If £4(G) = n® —3n% 4+ 2kn — ¥ then all the mequahtles in the proof should be equalities, so ¢ = 1,
di=k—-1,do =" =dp_p+1 = n—2 dp_pgro=---=d,=n—1. ThusG = (K1UKn,k)\/Kk,1, which

2
is not k-connected. But it can not satisfy 1 )d2(v) =1 (ZUGV(G) d(v)) , thus the equality can
not hold.
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(2) We consider ¢4(G). As in Theorem 3.1,

2
@G > n(nll)|: Z d(v)2n(n1)] .

Since 2n(n — 1) = 3, cy(@) d(v) > 0, then

@) m[i(i+k—2)+(n—k—i+l)(n—i—1)+(k:—1)(n—1)—2n(n—1)]2
_ n(nl_l){2n(n—1)—[i(i+k—2)+(n—k—i+1)(n—i—1)+(k:—1)(n—1)]}2
= n(nl_l)[—21’2—2i(—1+k—n)+n(n—1)]2.

Suppose f(z) = —22% —2x(—1+k—n) +n(n—1) with 1 <z < ”‘Tkﬂ, f) < f(z) < f(”_TkH),
f(1) =n(n+1) — 2k. Thus £4(G) > m(n(n +1) — 2k)2, so we get the result.
If ¢4(G) = ﬁ(n2 +n —2k)2, then all the inequalities in the proof should be equalities, so i = 1,

the remaining is as in the previous proof.

(3) We consider £°(G), as in Theorem 3.1, we have

€6 < (n-1) 3 2<n_d1()“)_d(v).

veV(Q)

Suppose f(x) = Q(R_ﬁ, f(x) = ﬁ >0, so

. i(i+k—2) (n—k—i+1)(n—i-1)
&HG) < (n_l)[Q(n—l)—(z'+k—2) 2(n—1)— (n—i—1)

CENUENIR
2(n—1)—(n—1)

_l’_

i(i+k—2) (n—k—i+1)(n—i—-1)
= -1 k—1].
(n )[Qn—k‘—i nti—1 +
Since 1 < i < "=E+L then 2n—k —i— (n+i—1) =n—k—2i+1> 0. Further, ®=F=H0n=iz)
Therefore,
i+ k—2) 2n—k—i+1)
e < 1 o _
e6) < (n-p| IR HOSEED
i(i +k—2) —2i(n—k—i+1
~ (n—1) i(i +k—2) z(n k—i+ )—i—f—n}
L n+i—1
[4(2i k—3n —
— (n—1) | 23R 3>+n]
n+i—1
Suppose f(ac):%withlgwg”‘Tk+1 , we can easily compute that frax(z) = f(1) =
7%—271—1_ Thus £“(G) < (n — 1)(&*—1 + n), so we get the result.
IF&9(G) = (n—1)(E=22=L 4 p) theni=1,di =k —1,dy =+ =dpps1 =1 — 2, dy_py2 =

«v»=dp=n—1. Thus G = (K; U K,,_x) V Kj_1, which is not k-connected.
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On the other hand, e(v) > %, with equality if and only if d(v, u) (for fixed v € V(G)) is a constant
for all uw € V(G) with v # u. But G = (K1 U K,,_) V Kj_1 can not satisfy it, the equality can not
hold. O

Theorem 3.4. Let G be a connected graph of order n > 7.
(1) If €¢(G) > n3 — 3n? + 6n — % > 0, then G is Hamilton-connected.
(2) If€(G) <
(3) If £(G) =

n(n— 1)(71 +n —6)2, then G is Hamilton-connected.
(n — 1)(n +n —3), then G is Hamilton-connected.

Proof. Suppose that G is not Hamilton-connected, then from Lemma 2.4, there exists an integer
2<k< % such that d_1 < k and d,,_r <n — k.

(1) We consider £¢(G), as in Theorem 3.1, we have

m2
£(G) < ( Y d )
veV(G)
< n[(k—1)k+(n—2k+1)(n—k:)+k:(n—1)]—47:2
- n2(n+1)—47;:2+n[3k2—(2n+3)k].

Suppose f(z) = 322 — (2n + 3)z with 2 < z < Z. As f(2) = 6 — 4n, f(%) = —in(n + 6),
f(3) - f(2) = —1(n—6)(n —4) <0, so we have fmax( ) = max{f(2), f(5)} = f(2). Thus, £%(G) <
n?(n+1) — —|—n(6 4n) = n® — 3n% + 6n — ™= 50 we get the result.

If £&4(G) = n3 — 3n? +67‘L—T, then k = 2, di=2,dy=d3=-=dpno=n—2,d,1 =

d, =n—1. Thus G = Ky V (K1 U K,,_3), which is not Hamilton-connected. But it can not satisfy
2
2 eV (@) ?v) =1 (ZUGV(G) d(v)) , thus the equality can not hold.

(2) We consider ¢4(G), as in Theorem 3.1, we have

€0 > [ Y dlw)—2nn—1)

Since 2n(n —1) = 3 ey (g) d(v) > 0, then

) n(nl_l) (k= 1)+ (n— 2k + 1)(n — k) + k(n — 1) — 2n(n — 1)]?
_ n(nl_l){Qn(n S ) [k — 1) + (n — 2k + D)(n — k) + k(n — 1)])°
ey (=32 + (2n + 3)k +n(n — 3)]°.

Suppose f(z) = —322 + (2n +3)z +n(n —3) with 2 < 2 < 2. As f(2) = n® +n —6, f(2) =
in(5n — 6), f(%) — f(2) = {(n —4)(n — 6) > 0, so we have fun(z) = min{f(2), f(%)} = f(2). Thus
¢4(G) > (n +n —6)2, so we get the result.

If ¢4(G ) = n(nl_l)( +n —6)2, then k = 2, the remaining is as in the previous proof.




60 Trans. Comb. 6 no. 4 (2017) 51-65 X. Zhu, L. Feng, M. Liu, W. Liu and Y. Hu

(3) We consider £°(G), as in Theorem 3.1, we have

d
@) < ) Y g
veV(Q)
Suppose f(x) = 55" 5=, f'(x) = ﬁ > 0, so
kk—1) (n—2k+1)(n—k) k(n—1)

G < (n—1) [Q(H—l)—k 2(n—1) — (n— k) 2(n—1)—=(n—1)

- KE—1)  (n—2k+ 1)(n—k)
- (n_l)[2n—k—2+ n+k—2 +k]

Since 2 < k < §, then 2n —k =2 - (n +k —2) = n — 2k > 0. Further, % =

(n=2k+1)(n+h—2-2k42) _ | op | g (2k=2)(n=2k+1)

n+k—2 n+k—2
Therefore,
k(k—1) (2k—2)(n—2k+1)
ce < _ 1 — 7k ].
§E) = )[n—i-k—Z n+k—2 ot
~ (1) [k(k—l)—(2k—2)(n—2k+1) —k+n+1}
n+k—2
4k? — (3n +5)k +2n + 2
= -1 1.
(n—1) { T — +n+ }
Suppose f(z) = 4x2_(3::;1€+2n+2 with 2 <o < 5. As f(5) = _n?ﬁﬁfv (2) =2 -4, f(3) -
n—4)(n2—7n n ce
f(2) = —0=E=E < 00 So we have fuax(r) = max{f(2),f($)} = f(2). Thus £&4(G) <
(n—1)[f(2) +n+1] = (n—1)(2 + n—3), so we get the result.
If¢°(G)=(n—1)(2+n—3),thenk=2,d1 =2, dy=d3 =+ =dp2o=n—-2,dp1 =dp, =n—1.

Thus G = Ko V (K7 U K,,—3), which is not Hamilton-connected.

On the other hand, £(v) > %, with equality if and only if d(v, u) (for fixed v € V(G)) is a constant
for all w € V(G) with v # u. Thus, G = Ky V (K1 U K,,_3) can not satisfy it, the equality can not
hold. O

Theorem 3.5. Let G = (X,Y; E) be a connected bipartite graph with X = {x1,z2,...,z,}, ¥ =
{y1,92,---,yn}, and n > 2. Then we have:

(1) If ¢4(G) < n(nl_l) (n?+2n —4)% + 71(‘2"7__12)2, then G is Hamiltonian.

(2) If€°(G) = (n—1) |g(n®* —2n +2) + #i?], then G is Hamiltonian.

Proof. Suppose that G is not Hamiltonian, then from Lemma 2.5, there exists an integer k < n such
that d(zp) < k and d(y,—x) < n — k. Let N(z1) := {z1,22,...25} be the neighbors of z, where
s = d(z1). Then d(z1,2;) = 1 for each z; € N(z1), d(x1,2;) > 2 for each x; with 2 < i < n, and
d(x1,y;) > 3 for each y; € Y — N(z1).

(1) We consider £4(G). First, we have

D(z1) > d(x1)+2(n—1)+3(n—d(z1)) = 5n — 2 — 2d(z1).
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Similarly, for each ¢ with 2 <17 < n and each j with 1 < j < n,
D(z;) > d(z;) +2(n—1)+3(n—d(z;)) = 5n — 2 — 2d(x;).
D(y;) = d(y;) +2(n — 1) + 3(n — d(y;)) = 5n — 2 — 2d(y;).

Therefore, we have

€@ = Y cw-pw> Y 2 puy— LS (D)

v

= —— 2n(5n —2)> —4(bn—2) Y d(v)+4 Z ]

veV(Q) veV (G

Y

— 2n(5n —2)° —4(5n—2) > d(v Z d(v ]

veV(G) UEV(G

veV (G veV(Q)

= D) 2n?(5n — 2)? — 4n(5n — 2 Z d(v) + 4( Z d(v ]

- 2
_ o2 QZd]w@n?)?

n—1
veV(G)

Since
2 Z dv) < 2[k*+ (n—k)n+ (n—k)*+ kn]

< 2[kn+ (n—Fk)n+ (n—k)n+ kn|
= 4n® < n(5n —2),

n(5n — 2)?
n—1

n(n —1) [”(5” -2) - 2(k‘2 +(n—Fkn+(n-— k:)2 + nk:)]2 +

1

= —— [-4k®+4nk+n(n—2)]" +

n(5n — 2)?
n(n —1) ’

n—1

Suppose f(z) = —42? + 4nx + n(n — 2) with 1 < o < n — 1. It is easy to see that fmm(x)
minf(1), f(n— D}, As F(1) = F(n— 1), fuin(z) = F(1) = 1 + 20 — 4, thus €4(G) > =1 (n”
2n — 4)% + n(on— 2)2.

n—1

_l’_



62 Trans. Comb. 6 no. 4 (2017) 51-65 X. Zhu, L. Feng, M. Liu, W. Liu and Y. Hu

If ¢4(G) = b (n® +2n — 42 + "C2225 then k = 1, d(x1) = 1, d(x2) = -+ = d(wn) = 1,
d(y1) =d(y2) = -+ =d(yn—1) =n—1, d(yn) = n. Thus G = K,, , — K1 1, which is not Hamiltonian.

On the other hand, e(v) > %, with equality if and only if d(v, u) (for fixed v € V(G)) is a constant
for all u € V(G) with v # u. However, G = K, — K1 -1 can not satisfy it, the equality can not
hold.

(2) We consider £°¢(G).

D(z1) > d(x1) +2(n—1) 4+ 3(n —d(x1)) = 5n — 2 — 2d(x1).
Similarly, for each i with 2 < ¢ <n and each j with 1 < j < n,

D(z;) > d(z;) +2(n—1)+3(n—d(z;)) = 5n — 2 — 2d(x;).

D(y;) > d(y;) +2(n — 1) + 3(n — d(y;)) = 5n — 2 — 2d(y;).

Therefore,

e = Y M

veV(Q) E(U)
n—1 n—1
< ~d(z;) + ~d(y;)
d(z;) d(y;)
< (-1 + ) :
|;E7.€X 5n — 2 — 2d(x;) oex 5n — 2 — 2d(y;)
Suppose f(x) = £—5—-, then we have f'(z) = % >0, so
€6 < (n—1) k2 N (n—k)n n (n — k)2 N kn
- bn—2—-2k 5n—-2-2n 5n—-2-2(n—k) bHn—2-2n
k? (n — k)? n?
- (n_l)[Bn—2—2k+3n+2k‘—2 3n—2]‘
Since 1 < k <n —1, then,
[ k2 (n — k)2 n?
ce G < o 1
@) = =Dl e - 3(k+1)+2k—2+3n—2]

B (n—l)- k2 +(n—k)2+ n?
B 3k+3  Bk+1  3n-—2

K (n—k)? nZ]

-1
(=D lss ™t 3hrs T2

(k2 + (n — k)? n?
— (-1
e T +3n—2]

IN

Suppose f(z) = % with 1 <z < (n—1). It is easy to see that fmax(x) = mzax{f(l), f(n—1)}.
As fln—1) = &=(n2 =20 42), fF(1) = L(n2 =20+ 2), f(n—1) — f(1) = - 2O 2082 -0 o we

6n
have foax(x) = f(1).
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If &4(G) = (n—1)|g(n®* —2n+2) + #;}, then & = 1, the remaining is as in the previous
proof. O

Theorem 3.6. Let G be a 2-connected graph of order n > 12. If £€4(G) < n(nl_l) [n2 +3n — 12]2,

then G is Hamiltonian.

Proof. Suppose that G is not Hamiltonian and G is not Ko V (2K U K,,_4), then from Lemma 2.6,
we have that m < ("52) + 3. As in Theorem 3.1,

(e

Y

> dw) —2n(n—1)

veV(G)

Since 2n(n — 1) = 3,y () d(v) > 0, then

3(E) nn—1) 2n(n — 1) — 2m]?
n(nl—l) [n2 +3n — 12]2.

Y

On the other hand, £(v) > ngl), with equality if and only if d(v, u) (for fixed v € V(G)) is a constant

for all u € V(G) with v # u. Thus, KoV (2K UK,,_4) can not satisfy it, the equality can not hold.

Theorem 3.7. Let G be a 3-connected graph of order n > 18. If €4(G) < n(nlfl) [n? +5n — 28]2,

then G is Hamiltonian.

Proof. Suppose that G is not Hamiltonian and G is not K3V (3K; U K;,_¢). Then from Lemma 2.7,
we have that m < (”53) + 8. Therefore,

€0 > | Y dw) -2 1)

n(n—1) VeV (G)

1 2 1) — 2m)?
n(n_l)[n(n_ >_ m]
n(nl_l)[n2+5n—28]2.

On the other hand, e(v) > 173(_1;1)’ with equality if and only if d(v, u) (for fixed v € V(G)) is a constant

for all u € V(G) with v # u. Thus, K3V (3K1UK,,_¢) can not satisfy it, the equality can not hold. [

Theorem 3.8. Let G be a k-connected graph of order n > 18. If

1

— |n(n — n—k—1)?
Ty 1 D B )k 1),

¢l(G) <

then G is Hamiltonian.
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Proof. Suppose that G is not Hamiltonian, then from Lemma 2.8, we have that m < (3) — (k+1)(n—
k —1)/2. Therefore,

L
n(n —1)

£4G) = Y d(v) —2n(n-1)
veV(G)
= n(nl— 0 [2n(n — 1) — 2m)?

1

— |n(n — n—k—1)]7
Ty 1 D k= 1P

which is a contradiction. This completes the proof. O
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