Let $G$ be a connected graph with vertex set $V(G)$. The degree resistance distance of $G$ is defined as $D_R(G) = \sum_{\{u, v\} \subseteq V(G)} [d(u)+d(v)] R(u,v)$, where $d(u)$ is the degree of vertex $u$, and $R(u,v)$ denotes the resistance distance between $u$ and $v$. In this paper, we characterize $n$-vertex unicyclic graphs having minimum and second minimum degree resistance distance.
O. Bucicovschi and S. M. Cioab\u{a} (2008). The minimum degree distance of graphs of given
order and size. Discrete Appl. Math.. 156, 3518-3521 F. Buckley and F. Harary (1990). Distance in Graphs. Addison--Wesley, Redwood. P. Dankelmann, I. Gutman, S. Mukwembi and
H. C. Swart (2009). On the degree distance of a graph. Discrete Appl. Math.. 157, 2773-2777 A. Dobrynin, R. Entringer and I. Gutman (2001). Wiener
index of trees: theory and applications. Acta Appl.
Math.. 66, 211-249 A. A. Dobrynin and A. A. Kochetova (1994). Degree distance
of a graph: A degree analogue of the Wiener index. J. Chem. Inf. Comput. Sci.. 34, 1082-1086 I. Gutman (1994). Selected properties of the Schultz molecular
topological index. J. Chem. Inf. Comput. Sci.. 34, 1087-1089 I. Gutman and B. Furtula (Eds.) (2012). Distance in
Molecular Graphs -- Theory. Univ. Kragujevac, Kragujevac. I. Gutman and B. Furtula (Eds.) (2012). Distance in
Molecular Graphs -- Applications. Univ. Kragujevac,
Kragujevac. A. Ili\'c, S. Klav\v{z}ar and D. Stevanovi\'c (2010). Calculating the degree distance of partial Hamming graphs. MATCH Commun. Math. Comput. Chem.. 63, 411-424 A. Ili\'c, D. Stevanovi\'c, L. Feng, G. Yu and
P. Dankelmann (2011). Degree distance of unicyclic and bicyclic
graphs. Discrete Appl. Math.. 159, 779-788 D. J. Klein and M. Randi\'c (1993). Resistance distance. J. Math. Chem.. 12, 81-95 A. I. Tomescu (2008). Unicyclic and bicyclic graphs
having minimum degree distance. Discrete Appl. Math.. 156, 125-130 I. Tomescu (1999). Some extremal properties of the degree
distance of a graph. Discrete Appl. Math.. 98, 159-163 I. Tomescu (2009). Properties of connected graphs having
minimum degree distance. Discrete Math.. 309, 2745-2748 W. Xiao and I. Gutman (2003). Resistance distance and Laplacian
spectrum. Theoret. Chem. Acta.. 110, 284-289 W. Xiao and I. Gutman (2003). On resistance matrices. MATCH Commun. Math. Comput. Chem.. 49, 67-81 W. Xiao and I. Gutman (2004). Relations between resistance
and Laplacian matrices and their applications. MATCH Commun. Math. Comput. Chem.. 51, 119-127 H. Yuan and C. An (2006). The unicyclic graphs with maximum
degree distance. em J. Math. Study. 39, 18-24
Gutman, I., Feng, L., & Yu, G. (2012). Degree resistance distance of unicyclic graphs. Transactions on Combinatorics, 1(2), 27-40. doi: 10.22108/toc.2012.1080
MLA
Ivan Gutman; Linhua Feng; Guihai Yu. "Degree resistance distance of unicyclic graphs". Transactions on Combinatorics, 1, 2, 2012, 27-40. doi: 10.22108/toc.2012.1080
HARVARD
Gutman, I., Feng, L., Yu, G. (2012). 'Degree resistance distance of unicyclic graphs', Transactions on Combinatorics, 1(2), pp. 27-40. doi: 10.22108/toc.2012.1080
VANCOUVER
Gutman, I., Feng, L., Yu, G. Degree resistance distance of unicyclic graphs. Transactions on Combinatorics, 2012; 1(2): 27-40. doi: 10.22108/toc.2012.1080