Total $k$-distance domination critical graphs

Document Type : Research Paper


1 University of Tafresh

2 Department of Basic Science, Babol University of Technology, Babol, I.R. Iran

3 Wuxi City College of Vocational Technology


A set $S$ of vertices in a graph $G=(V,E)$ is called a total‎ ‎$k$-distance dominating set if every vertex in $V$ is within‎ ‎distance $k$ of a vertex in $S$‎. ‎A graph $G$ is total $k$-distance‎ ‎domination-critical if $\gamma_{t}^{k} (G‎ - ‎x) < \gamma_{t}^{k}‎ ‎(G)$ for any vertex $x\in V(G)$‎. ‎In this paper‎, ‎we investigate some results on total $k$-distance domination-critical of graphs‎.


Main Subjects

[1] J. A. Bondy and U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics, 244, Springer, New York, 2008.

[2] W. Goddard, T. W. Haynes, M. A. Henning and L. C. van der Merwe, The diameter of total domination vertex critical graphs, Discrete Math., 286 (2004) 255–261.

[3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Monographs and Text- books in Pure and Applied Mathematics, 208, Marcel Dekker, Inc., New York, 1998.

[4] M. A. Henning, O. R. Oellermann and H. C. Swart. Bounds on distance domination parameters, J. Combin. Inform. System Sci., 16 (1991) 11–18.

[5] N. Jafari Rad and S. Rahimi Sharebaf, A Remark on Total Domination Critical Graphs, Appl. Math. Sci. (Ruse), 2 (2008) 2025–2028.

[6] A. Khodkar, D. A. Mojdeh and A. P. Kazemi, Domination in Harary graphs, Bull. Inst. Combin. Appl., 49 (2007) 61–78.

[7] D. A. Mojdeh and N. Jafari Rad, On an open problem concerning total domination critical graphs, Expo. Math., 25 (2007) 175–179.

[8] D. A. Mojdeh and N. Jafari Rad, On the total domination critical graphs, Electronic Notes in Discrete Mathematics, 24, Elsevier Sci. B. V., Amsterdam, 2006 89–92.

[9] M. Y. Sohn, D. Kim, Y. S. Kwon and J. Lee, On the existence problem of the total domination vertex critical
graphs, Discrete Appl. Math., 159 (2011) 46–52.

[10] F. Tian and J.-Ming Xu, Distance domination-critical graphs, Appl. Math. Lett., 21 (2008) 416–420.

[11] H. Wang and G. Wang, A Note on Total Domination Critical Graphs, ResearchGate, 2014,http://www.

[12] D. B. West, Introduction to gragh theory, (2nd edition), Prentice Hall, U.S.A., 2001.
Volume 5, Issue 3 - Serial Number 3
September 2016
Pages 1-9
  • Receive Date: 11 July 2015
  • Revise Date: 10 December 2015
  • Accept Date: 15 December 2015
  • Published Online: 01 September 2016