[1] A. Bacher, Average site p erimeter of directed animals on the two-dimensional lattices, Discrete Math., 312 (2012) 1038-1058.
[2] A. Blecher, C. Brennan and A. Knopfmacher, The site-p erimeter in p ermutations, Utilitas Math., in press.
[3] M. Bousquet-Melou, A metho d for the enumeration of various classes of column-convex p olygons, Discrete Math., 154 (1996) 1-25.
[4] M. Bousquet-Melou and A. Rechnitzer, The site-p erimeter of bargraphs, Adv. in Appl. Math., 31 (2003) 86-112.
[5] M. Delest, D. Gouyou-Beauchamps and B. Vauquelin, Enumeration of parallelogram p olyomino es with given b ond and site p erimeter, Graphs Combin., 3 (1987) 325-339.
[6] G. F ulep and N. Sieb en, Polyiamonds and p olyhexes with minimum site-p erimeter and achievement games, Elect. J. Combin., 17 (2010) ♯R65.
[7] G. Grimmett, Percolation, Springer-Verlag, New York, 1989.
[8] S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Discrete Mathematics and its applications, CRC press, Taylor and Francis group, 2010.
[9] N. Sieb en, Polyomino es with minimum site-p erimeter and full set achievement games, Europ. J. Combin., 29 (2008) 108-117.
[10] D. Stauffer and A. Aharony, An Introduction to Percolation Theory, 2nd edition, Taylor and Francis, London, 1992.