[1] S. Annin and S. Maglione, Economical generating sets for the symmetric and alternating groups consisting of cycles of a xed length, J. Algebra Appl., 11 no. 16 (2012) pp.8.
[2] L. Babai and A. Seress, On the diameter of Cayley graphs of the symmetric group, J. Combin. Theory Ser. A, 49 no. 1 (1988) 175-179.
[3] L. Babai and A. Seress, On the diameter of p ermutation groups, European J. Combin., 13 no. 4 (1992) 231-243.
[4] M. Camelo, D. Papadimitriou, L. Fbrega and P. Vil, Efficient routing in data center with underlying Cayley graph, In: Complex Networks V, (Springer), 549 (2014) 189-197.
[5] G. Co op erman and L. Finkelstein, A strong generating test and short presentations for p ermutation groups, J. Symbolic Comput., 12 no. 4-5 (1991) 475-497.
[6] A. Kalka, M. Teicher and B. Tsaban, Short expressions of p ermutations as pro ducts and cryptanalysis of the algebraic eraser, Adv. Appl. Math., 49 no. 1 (2012) 57-76.
[7] E. Konstantinova, On reconstruction of signed p ermutations distorted by reversal errors, Discrete Math., 308 no. 5-6 (2008) 974-984.
[8] E. Konstantinova, Vertex reconstruction in Cayley graphs, Discrete Math., 309 no. 3 (2009) 548-559.
[9] V. Levenshtein and J. Siemons, Error graphs and the reconstruction of elements in groups, J. Combin. Theory Ser. A, 116 no. 4 (2009) 795-815.
[10] T. Minkwitz, An algorithm for solving the factorization problem in p ermutation groups, J. Symbolic Comput., 26 no. 1 (1998) 89-95.
[11] T. Phongpattanacharo en and J. Siemons, Metric intersection problems in Cayley graphs and the Stirling recursion, Aequationes Math., 85 no. 3 (2013) 387-408.
[12] J. L. Soncco- Alvarez, G. M. Almeida, J. Becker and M. Ayala-Rincon, Parallelization of genetic algorithms for sorting p ermutations by reversals over biological data, Int. J. Hybrid Intel l. Syst., 12 no. 1 (2015) 53-64.
[13] B. Suceava and R. Stong, The fewest 3-cycles to generate an even p ermutation, Amer. Math. Monthly, 110 no. 2 (2003) 162-162.