Splices, Links, and their Edge-Degree Distances

Document Type : Research Paper


1 Kazerun Branch, Islamic Azad University

2 Shiraz Technical College, Technical and Vocational University


The edge-degree distance of a simple connected graph $G$ is defined as the sum of the terms $\bigl(d(e\left|G\right.)+d(f\left|G\right.)\bigr)d(e,f\left|G\right.)$ over all unordered pairs $\{e,f\}$ of edges of $G$, where $d(e\left|G\right.)$ and $d(e,f\left|G\right.)$ denote the degree of the edge $e$ in $G$ and the distance between the edges $e$ and $f$ in $G$, respectively. In this paper, we study the behavior of two versions of the edge-degree distance under two graph products called splice and link.


Main Subjects

[1] P. Ali and S. Mukwembi, Degree distance and edge-connectivity, Australas. J. Combin., 60 no. 1 (2014) 50-68.
[2] A. R. Ashra , A. Hamzeh and S. Hossein-Zadeh, Calculation of some top ological indices of splices and links of graphs, J. Appl. Math. Inf., 29 no. 1-2 (2011) 327-335.
[3] M. Azari, Sharp lower b ounds on the Narumi-Katayama index of graph op erations, Appl. Math. Comput., 239 (2014) 409-421.
[4] M. Azari, A note on vertex-edge Wiener indices, Iranian J. Math. Chem., 7 no. 1 (2016) 11-17.
[5] M. Azari and F. Falahati-Nezhad, On vertex-degree-based invariants of link of graphs with application in dendrimers, J. Comput. Theor. Nanosci., 12 no. 12 (2015) 5611-5616.
[6] M. Azari and F. Falahati-Nezhad, Splice graphs and their vertex-degree-based invariants, Iranian J. Math. Chem., 8 no. 1 (2017) 61-70.
[7] M. Azari, A. Iranmanesh and I. Gutman, Zagreb indices of bridge and chain graphs, MATCH Commun. Math. Comput. Chem., 70 no. 3 (2013) 921-938.
[8] O. Bucicovschi and S. M. Cioaba, The minimum degree distance of graphs of given order and size, Discrete Appl. Math., 156 no. 18 (2008) 3518-3521.
[9] P. Dankelmann, I. Gutman, S. Mukwembi and H. C. Swart, On the degree distance of a graph, Discrete Appl. Math., 157 no. 13 (2009) 2773-2777.
[10] K. C. Das, G. Su and L. Xiong, Relation b etween degree distance and Gutman index of graphs, MATCH Commun. Math. Comput. Chem., 76 no. 1 (2016) 221-232.
[11] M. V. Diudea, QSPR/QSAR Studies by Molecular Descriptors, NOVA, New York, 2001.
[12] A. Dobrynin and A. A. Ko chetova, Degree distance of a graph: A degree a nalogue of the Wiener index, J. Chem. Inf. Comput. Sci., 34 no. 5 (1994) 1082-1086.
[13] T. Doslic, Splices, links and their degree-weighted Wiener p olynomials, Graph Theory Notes N. Y., 48 (2005) 47-55.
[14] Z. Du and B. Zhou, Degree distance of unicyclic graphs, Filomat, 24 no. 4 (2010) 95-120.
[15] I. Gutman, Selected prop erties of the Schultz molecular top ological index, J. Chem. Inf. Comput. Sci., 34 no. 5 (1994) 1087-1089.
[16] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[17] I. Gutman and N. Trina jstic, Graph theory and molecular orbitals, Total-electron energy of alternant hydro car-b ons, Chem. Phys. Lett., 17 no. 4 (1972) 535-538.
[18] A. Hamzeh, A. Iranmanesh, M. A. Hosseinzadeh and S. Hossein-Zadeh, The Hosoya index and the Merri eld-Simmons index of some graphs, Trans. Comb., 1 no. 4 (2012) 51-60.
[19] M. A. Hosseinzadeh, A. Iranmanesh and T. Doslic, On the Narumi-Katayama index of splice and link of graphs, Electron. Notes Discrete Math., 45 (2014) 141-146.
[20] Y. Hou and A. Chang, The unicyclic graphs with maximum degree distance, J. Math. Study, 39 (2006) 18-24.
[21] A. Ilic, S. Klavzar and D. Stevanovic, Calculating the degree distance of partial Hamming graphs, MATCH Commun.Math. Comput. Chem., 63 no. 2 (2010) 411-424.
[22] A. Ilic, D. Stevanovic, L. Feng, G. Yu and P. Dankelmann, Degree distance of unicyclic and bicyclic graphs, Discrete Appl. Math., 159 no. 8 (2011) 779-788.
[23] A. Iranmanesh, I. Gutman, O. Khormali and A. Mahmiani, The edge versions of the Wiener index, MATCH Commun. Math. Comput. Chem., 61 no. 3 (2009) 663-672.
[24] A. Iranmanesh, O. Khormali and A. Ahmadi, Generalized edge-Schultz indices of some graphs, MATCH Commun. Math. Comput. Chem., 65 no. 1 (2011) 93-112.
[25] M. Mogharrab and I. Gutman, Bridge graphs and their top ological indices, MATCH Commun. Math. Comput. Chem., 69 no. 3 (2013) 579-587.
[26] R. Sharafdini and I. Gutman, Splice graphs and their top ological indices, Kragujevac J. Sci., 35 (2013) 89-98.
[27] I. Tomescu, Prop erties of connected graphs having minimum degree distance, Discrete Math., 309 no. 9 (2009) 2745-2748.
[28] I. Tomescu, Ordering connected graphs having small degree distances, Discrete Appl. Math., 158 no. 15 (2010) 1714-1717.
[29] I. Tomescu and S. Kanwal, Ordering connected graphs having small degree distances II, MATCH Commun. Math. Comput. Chem., 67 no. 2 (2012) 425-437.
[30] H. Wiener, Structural determination of paraļ¬ƒn b oiling p oints, J. Am. Chem. Soc., 69 no. 1 (1947) 17-20.
Volume 6, Issue 4 - Serial Number 4
December 2017
Pages 29-42
  • Receive Date: 28 January 2017
  • Revise Date: 18 February 2017
  • Accept Date: 17 August 2017
  • Published Online: 01 December 2017