R. van Dal, G. Tijssen, Z. Tuza, J. A. A. van der Veen, Ch. Zamfirescu and T. Zamfirescu (1996). Hamiltonian properties of Toeplitz graphs. Discrete Math.. 159, 69-81
R. Euler, H. Le Verge and T. Zamfirescu (1995). A characterization of infinite, bipartite Toeplitz graphs. Combinatorics and graph theory '95, World Sci. Publ., River Edge, NJ. 1, 119-130
R. Euler (November 1998). Coloring infinite, planar Toeplitz graphs. Tech. Report, Laboratoire d'Informatique de Brest (LIBr).
R. Euler (2001). Characterizing bipartite Toeplitz graphs. Theoret. Comput. Sci.. 263, 47-58
C. Heuberger (2002). On Hamiltonian Toeplitz graphs. Discrete Math.. 245, 107-125
S. Malik and A. M. Qureshi Hamiltonian cycles in directed Toeplitz graphs. Ars Combinatoria, to appear..
S. Malik Hamiltonian cycles in directed Toeplitz graphs-- part 2. Ars Combinatoria, to appear..
S. Malik Hamiltonian in directed Toeplitz graphs of maximum (out or in) degree $4$. Utilitas Mathematica, to appear..
S. Malik and T. Zamfirescu (2010). Hamiltonian connectedness in directed Toeplitz graphs. Bull. Math. Soc. Sci. Math. Roumanie (N.S.). 53(101) (2), 145-156
S. Bau (2011). A generalization of the concept of Toeplitz graphs. Mong. Math. J.. 15, 45-61
R. Euler and T. Zamfirescu On planar Toeplitz graphs. Graphs and Combinatorics, to appear..
J. Petersen (1891). Die Theorie der regul"aren graphs. Acta Math.. 15, 193-220
O. Veblen (1912/13). An application of modular equations in analysis situs. Ann. of Math. (2). 14, 86-94
D. B. West (2001). Introduction to Graph Theory. second eddition, Prentice--Hall, New Jersey.