Toeplitz graph decomposition

Document Type : Research Paper


PhD Student


‎Let $n,\,t_1,\,\ldots,\,t_k$ be distinct positive integers‎. ‎A Toeplitz graph $G=(V‎, ‎E)$ is a graph with $V =\{1,\ldots,n\}$ and‎ ‎$E= \{(i,j)\mid |i-j|\in \{t_1,\ldots,t_k\}\}$‎. ‎In this paper‎, ‎we present some results on decomposition of Toeplitz graphs‎.


Main Subjects

R. van Dal, G. Tijssen, Z. Tuza, J. A. A. van der Veen, Ch. Zamfirescu and T. Zamfirescu (1996). Hamiltonian properties of Toeplitz graphs. Discrete Math.. 159, 69-81 R. Euler, H. Le Verge and T. Zamfirescu (1995). A characterization of infinite, bipartite Toeplitz graphs. Combinatorics and graph theory '95, World Sci. Publ., River Edge, NJ. 1, 119-130 R. Euler (November 1998). Coloring infinite, planar Toeplitz graphs. Tech. Report, Laboratoire d'Informatique de Brest (LIBr). R. Euler (2001). Characterizing bipartite Toeplitz graphs. Theoret. Comput. Sci.. 263, 47-58 C. Heuberger (2002). On Hamiltonian Toeplitz graphs. Discrete Math.. 245, 107-125 S. Malik and A. M. Qureshi Hamiltonian cycles in directed Toeplitz graphs. Ars Combinatoria, to appear.. S. Malik Hamiltonian cycles in directed Toeplitz graphs-- part 2. Ars Combinatoria, to appear.. S. Malik Hamiltonian in directed Toeplitz graphs of maximum (out or in) degree $4$. Utilitas Mathematica, to appear.. S. Malik and T. Zamfirescu (2010). Hamiltonian connectedness in directed Toeplitz graphs. Bull. Math. Soc. Sci. Math. Roumanie (N.S.). 53(101) (2), 145-156 S. Bau (2011). A generalization of the concept of Toeplitz graphs. Mong. Math. J.. 15, 45-61 R. Euler and T. Zamfirescu On planar Toeplitz graphs. Graphs and Combinatorics, to appear.. J. Petersen (1891). Die Theorie der regul\"aren graphs. Acta Math.. 15, 193-220 O. Veblen (1912/13). An application of modular equations in analysis situs. Ann. of Math. (2). 14, 86-94 D. B. West (2001). Introduction to Graph Theory. second eddition, Prentice--Hall, New Jersey.
Volume 1, Issue 4 - Serial Number 4
December 2012
Pages 35-41
  • Receive Date: 28 August 2012
  • Revise Date: 19 November 2012
  • Accept Date: 06 December 2012
  • Published Online: 01 December 2012