[1] A. Blecher, C. Brennan and A. Knopfmacher, Levels in bargraphs, Ars Math. Contemp., 9 (2015) 297–310.
[2] A. Blecher, C. Brennan and A. Knopfmacher, Peaks in bargraphs, Trans. Royal Soc. S. Afr., 71 (2016) 97–103.
[3] A. Blecher, C. Brennan and A. Knopfmacher, Combinatorial parameters in bargraphs, Quaest. Math., 39 (2016) 619–635.
[4] E. Deutsch and S. Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, Discrete Appl. Math., 221 (2017) 54–66.
[5] S. Fereti´ c, A perimeter enumeration of column-convex polyominoes, Discrete Math. Theor. Comput. Sci., 9 (2007) 57–83.
[6] A. Geraschenko, An investigation of skyline polynomials, http://people.brandeis.edu/ gessel/47a/geraschenko.pdf.
[7] S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Discrete Math. Appl., Chapman &
Hall/CRC, Boca Raton, (2009).
[8] Q.-M. Luo, An explicit formula for the Euler numbers of higher order, Tamkang J. Math., 36 (2005) 315–317.
[9] T. Mansour, Enumeration of words by sum of differences between adjacent letters, Discrete Math. Theor. Comput. Sci., 11 (2009) 173–185.
[10] J. Osborn and T. Prellberg, Forcing adsorption of a tethered polymer by pulling, J. Stat. Mech., 2010 (2010) 1–18.
[11] T. Prellberg and R. Brak, Critical exponents from nonlinear functional equations for partially directed cluster models, J. Stat. Phys., 78 (1995) 701–730.
[12] N. J. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org, 2010.
[13] H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, 2001.